#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Various math functions for working with vectors, matrices, and quaternions.
"""
# Part of the PsychoPy library
# Copyright (C) 2002-2018 Jonathan Peirce (C) 2019-2025 Open Science Tools Ltd.
# Distributed under the terms of the GNU General Public License (GPL).
__all__ = [
    'VEC_AXES',  # constants
    'VEC_AXIS_FORWARD',
    'VEC_AXIS_BACKWARD',
    'VEC_AXIS_UP',
    'VEC_AXIS_DOWN',
    'VEC_AXIS_RIGHT',
    'VEC_AXIS_LEFT',
    'VEC_AXIS_POS_X',
    'VEC_AXIS_NEG_X',
    'VEC_AXIS_POS_Y',
    'VEC_AXIS_NEG_Y',
    'VEC_AXIS_POS_Z',
    'VEC_AXIS_NEG_Z',
    'RigidBodyPose',  # rigid body pose class
    'BoundingBox',
    'length',  # vector functions
    'normalize',
    'orthogonalize',
    'reflect',
    'dot',
    'cross',
    'project',
    'lerp',
    'distance',
    'perp',
    'bisector',
    'angleTo',
    'sortClockwise',
    'surfaceNormal',
    'surfaceBitangent',
    'surfaceTangent',
    'vertexNormal',
    'fixTangentHandedness',
    'fitBBox',
    'computeBBoxCorners',
    'intersectRayPlane',
    'intersectRaySphere',
    'intersectRayAABB',
    'intersectRayOBB',
    'intersectRayTriangle',
    'ortho3Dto2D',
    'articulate',
    'slerp',  # quaternion functions
    'quatToAxisAngle',
    'quatFromAxisAngle',
    'quatYawPitchRoll',
    'quatMagnitude',
    'multQuat',
    'invertQuat',
    'applyQuat',
    'accumQuat',
    'alignTo',
    'matrixToQuat',
    'identityMatrix',  # matrix functions
    'quatToMatrix',
    'scaleMatrix',
    'rotationMatrix',
    'translationMatrix',
    'invertMatrix',
    'multMatrix',
    'concatenate',
    'matrixFromEulerAngles',
    'isOrthogonal',
    'isAffine',
    'applyMatrix',
    'posOriToMatrix',
    'transform',
    'scale',
    'normalMatrix',
    'forwardProject',
    'reverseProject',
    'lookAt',
    'zeroFix',  # misc functions
    'lensCorrection',
    'lensCorrectionSpherical',
    'infrange',
    'setDefaultPrecision'
]
import numpy as np
import functools
import itertools
VEC_AXES = {  # mapping of axis names to vectors
    '+x': (1, 0, 0), '-x': (-1, 0, 0),
    '+y': (0, 1, 0), '-y': (0, -1, 0),
    '+z': (0, 0, 1), '-z': (0, 0, -1)}
# vectors for common axes
VEC_AXIS_BACKWARD = VEC_AXIS_POS_Z = VEC_AXES['+z']
VEC_AXIS_FORWARD = VEC_AXIS_NEG_Z = VEC_AXES['-z']
VEC_AXIS_UP = VEC_AXIS_POS_Y = VEC_AXES['+y']
VEC_AXIS_DOWN = VEC_AXIS_NEG_Y = VEC_AXES['-y']
VEC_AXIS_RIGHT = VEC_AXIS_POS_X = VEC_AXES['+x']
VEC_AXIS_LEFT = VEC_AXIS_NEG_X = VEC_AXES['-x']
DEFAULT_DTYPE = float
def setDefaultPrecision(dtype='float64'):
    """Set the default precision for math functions.
    Once set, all math functions in this module will use the specified data type 
    for computations in successive calls. This is useful when you want to ensure
    a specific precision for all math operations.
    Parameters
    ----------
    dtype : dtype or str
        Data type for computations can either be 'float32' or 'float64'.
    """
    global DEFAULT_DTYPE
    DEFAULT_DTYPE = np.dtype(dtype).type
    
# ------------------------------------------------------------------------------
# Classes for working with rigid body poses
#
[docs]
class RigidBodyPose:
    """Class for representing rigid body poses.
    This class is an abstract representation of a rigid body pose, where the
    position of the body in a scene is represented by a vector/coordinate and
    the orientation with a quaternion. Pose can be manipulated and interacted
    with using class methods and attributes. Rigid body poses assume a
    right-handed coordinate system (-Z is forward and +Y is up).
    Poses can be converted to 4x4 transformation matrices with `getModelMatrix`.
    One can use these matrices when rendering to transform the vertices of a
    model associated with the pose by passing them to OpenGL. Matrices are
    cached internally to avoid recomputing them if `pos` and `ori` attributes
    have not been updated.
    Operators `*` and `~` can be used on `RigidBodyPose` objects to combine and
    invert poses. For instance, you can multiply (`*`) poses to get a new pose
    which is the combination of both orientations and translations by::
        newPose = rb1 * rb2
    Likewise, a pose can be inverted by using the `~` operator::
        invPose = ~rb
    Multiplying a pose by its inverse will result in an identity pose with no
    translation and default orientation where `pos=[0, 0, 0]` and
    `ori=[0, 0, 0, 1]`::
        identityPose = ~rb * rb
    Warnings
    --------
    This class is experimental and may result in undefined behavior.
    """
[docs]
    def __init__(self, pos=(0., 0., 0.), ori=(0., 0., 0., 1.), dtype=None):
        """
        Parameters
        ----------
        pos : array_like
            Position vector `[x, y, z]` for the origin of the rigid body.
        ori : array_like
            Orientation quaternion `[x, y, z, w]` where `x`, `y`, `z` are
            imaginary and `w` is real.
        dtype : dtype or str, optional
            Data type for computations can either be 'float32' or 'float64'.
            Default is `None` which uses the default data configured by
            `setDefaultPrecision`.
        """
        # set the data type for computations
        self._dtype = \
            
np.dtype(dtype).type if dtype is not None else DEFAULT_DTYPE
        # position and orientation
        self._pos = np.ascontiguousarray(pos, dtype=self.dtype)
        self._ori = np.ascontiguousarray(ori, dtype=self.dtype)
        self._modelMatrix = posOriToMatrix(
            self._pos, self._ori, dtype=self.dtype)
        # computed only if needed
        self._normalMatrix = np.zeros((4, 4), dtype=self.dtype, order='C')
        self._invModelMatrix = np.zeros((4, 4), dtype=self.dtype, order='C')
        self._viewMatrix = np.zeros((4, 4), dtype=self.dtype, order='C')
        self._invViewMatrix = np.zeros((4, 4), dtype=self.dtype, order='C')
        # additional useful vectors
        self._at = np.zeros((3,), dtype=self.dtype, order='C')
        self._up = np.zeros((3,), dtype=self.dtype, order='C')
        self._viewAxes = np.array(  # cache for view matrix calculations
            [VEC_AXIS_FORWARD, VEC_AXIS_UP], dtype=self.dtype, order='C')
        # compute matrices only if `pos` and `ori` attributes have been updated,
        # we track the state of the matrices with these flags
        self._cacheFlags = {
            'model': True,  # already computed
            'imodel': False,
            'normal': False,
            'view': False,
            'iview': False
        }
        self.pos = pos
        self.ori = ori
        self._bounds = None 
    def __repr__(self):
        return 'RigidBodyPose(pos={}, ori={})'.format(self.pos, self.ori)
    @property
    def dtype(self):
        """Data type used for computations and arrays (`numpy.dtype`).
        Cannot be changed after object creation.
        """
        return self._dtype
    @property
    def bounds(self):
        """Bounding box associated with this pose.
        """
        return self._bounds
    @bounds.setter
    def bounds(self, value):
        self._bounds = value
    @property
    def pos(self):
        """Position vector (X, Y, Z).
        """
        return self._pos
    @pos.setter
    def pos(self, value):
        self._pos = np.ascontiguousarray(value, dtype=self.dtype)
        self._cacheFlags = dict.fromkeys(self._cacheFlags.keys(), True)
    @property
    def ori(self):
        """Orientation quaternion (X, Y, Z, W).
        """
        return self._ori
    @ori.setter
    def ori(self, value):
        self._ori = np.ascontiguousarray(value, dtype=self.dtype)
        self._cacheFlags = dict.fromkeys(self._cacheFlags.keys(), True)
    @property
    def posOri(self):
        """The position (x, y, z) and orientation (x, y, z, w).
        """
        return self._pos, self._ori
    @posOri.setter
    def posOri(self, value):
        self._pos = np.ascontiguousarray(value[0], dtype=self.dtype)
        self._ori = np.ascontiguousarray(value[1], dtype=self.dtype)
        self._cacheFlags = dict.fromkeys(self._cacheFlags.keys(), True)
    @property
    def at(self):
        """Vector defining the forward direction (-Z) of this pose.
        """
        # matrix needs update, this need to be too
        if self._cacheFlags['model']:  
            self._at = applyQuat(
                self.ori, self._viewAxes[0, :], out=self._at, dtype=self.dtype)
        return self._at
    @property
    def up(self):
        """Vector defining the up direction (+Y) of this pose.
        """
        if self._cacheFlags['model']:
            self._up = applyQuat(
                self.ori, self._viewAxes[1, :], out=self._up, dtype=self.dtype)
        return self._up
    def __mul__(self, other):
        """Multiply two poses, combining them to get a new pose.
        """
        newOri = multQuat(self._ori, other.ori)
        return RigidBodyPose(transform(other.pos, newOri, self._pos), newOri)
    def __imul__(self, other):
        """Inplace multiplication. Transforms this pose by another.
        """
        self._ori = multQuat(self._ori, other.ori)
        self._pos = transform(other.pos, self._ori, self._pos)
[docs]
    def copy(self):
        """Get a new `RigidBodyPose` object which copies the position and
        orientation of this one. Copies are independent and do not reference
        each others data.
        Returns
        -------
        RigidBodyPose
            Copy of this pose.
        """
        return RigidBodyPose(self._pos, self._ori) 
[docs]
    def isEqual(self, other):
        """Check if poses have similar orientation and position.
        Parameters
        ----------
        other : `RigidBodyPose`
            Other pose to compare.
        Returns
        -------
        bool
            Returns `True` is poses are effectively equal.
        """
        return np.isclose(self._pos, other.pos) and \
            
np.isclose(self._ori, other.ori) 
[docs]
    def clear(self):
        """Clear the pose, setting position and orientation to zero.
        """
        self._pos.fill(0.0)
        self._ori[:3] = 0.0
        self._ori[3] = 1.0
        self._cacheFlags = dict.fromkeys(a.keys(), True) 
[docs]
    def setIdentity(self):
        """Clear rigid body transformations (alias for `clear`).
        """
        self.clear() 
[docs]
    def getOriAxisAngle(self, degrees=True):
        """Get the axis and angle of rotation for the rigid body. Converts the
        orientation defined by the `ori` quaternion to and axis-angle
        representation.
        Parameters
        ----------
        degrees : bool, optional
            Specify ``True`` if `angle` is in degrees, or else it will be
            treated as radians. Default is ``True``.
        Returns
        -------
        tuple
            Axis [rx, ry, rz] and angle.
        """
        return quatToAxisAngle(self._ori, degrees, dtype=self.dtype) 
[docs]
    def setOriAxisAngle(self, axis, angle, degrees=True):
        """Set the orientation of the rigid body using an `axis` and
        `angle`. This sets the quaternion at `ori`.
        Parameters
        ----------
        axis : array_like
            Axis of rotation [rx, ry, rz].
        angle : float
            Angle of rotation.
        degrees : bool, optional
            Specify ``True`` if `angle` is in degrees, or else it will be
            treated as radians. Default is ``True``.
        """
        self.ori = quatFromAxisAngle(axis, angle, degrees, dtype=self.dtype) 
[docs]
    def getYawPitchRoll(self, degrees=True):
        """Get the yaw, pitch and roll angles for this pose relative to the -Z
        world axis.
        Parameters
        ----------
        degrees : bool, optional
            Specify ``True`` if `angle` is in degrees, or else it will be
            treated as radians. Default is ``True``.
        """
        return quatYawPitchRoll(self._ori, degrees, dtype=self.dtype) 
    @property
    def modelMatrix(self):
        """Pose as a 4x4 model matrix (read-only)."""
        if not self._cacheFlags['model']:
            return self._modelMatrix
        else:
            return self.getModelMatrix()
    @property
    def inverseModelMatrix(self):
        """Inverse of the pose as a 4x4 model matrix (read-only)."""
        if not self._cacheFlags['imodel']:
            return self._invModelMatrix
        else:
            return self.getModelMatrix(inverse=True)
    @property
    def normalMatrix(self):
        """The 4x4 normal transformation matrix (read-only)."""
        if not self._cacheFlags['normal']:
            return self._normalMatrix
        else:
            return self.getNormalMatrix()
    @property
    def viewMatrix(self):
        """The 4x4 view matrix for this pose (read-only)."""
        if not self._cacheFlags['view']:
            return self._viewMatrix
        else:
            return self.getViewMatrix()
    @property
    def inverseViewMatrix(self):
        """The inverse of the 4x4 view matrix for this pose (read-only)."""
        if not self._cacheFlags['iview']:
            return self._invViewMatrix
        else:
            return self.getViewMatrix(inverse=True)
[docs]
    def getNormalMatrix(self, out=None):
        """Get the present normal matrix.
        Parameters
        ----------
        out : ndarray or None
            Optional 4x4 array to write values to. Values written are computed
            using 32-bit float precision regardless of the data type of `out`.
        Returns
        -------
        ndarray
            4x4 normal transformation matrix.
        """
        if not self._cacheFlags['normal']:
            return self._normalMatrix
        self._normalMatrix[:, :] = np.linalg.inv(self.modelMatrix).T
        self._cacheFlags['normal'] = False
        if out is not None:
            out[:, :] = self._normalMatrix[:, :]
            return out
        return self._normalMatrix 
[docs]
    def getModelMatrix(self, inverse=False, out=None):
        """Get the present rigid body transformation as a 4x4 matrix.
        Matrices are computed only if the `pos` and `ori` attributes have been
        updated since the last call to `getModelMatrix`. The returned matrix is
        an `ndarray` and row-major.
        Parameters
        ----------
        inverse : bool, optional
            Return the inverse of the model matrix.
        out : ndarray or None
            Optional 4x4 array to write values to. Values written are computed
            using 32-bit float precision regardless of the data type of `out`.
        Returns
        -------
        ndarray
            4x4 transformation matrix.
        Examples
        --------
        Using a rigid body pose to transform something in OpenGL::
            rb = RigidBodyPose((0, 0, -2))  # 2 meters away from origin
            # Use `array2pointer` from `psychopy.tools.arraytools` to convert
            # array to something OpenGL accepts.
            mv = array2pointer(rb.modelMatrix)
            # use the matrix to transform the scene
            glMatrixMode(GL_MODELVIEW)
            glPushMatrix()
            glLoadIdentity()
            glMultTransposeMatrixf(mv)
            # draw the thing here ...
            glPopMatrix()
        """
        if self._cacheFlags['model']:
            self._modelMatrix = posOriToMatrix(
                self._pos, self._ori, 
                out=self._modelMatrix,
                dtype=self.dtype)
            # all other matrices need update when next accessed
            self._cacheFlags['model'] = False
            self._cacheFlags['imodel'] = True
            self._cacheFlags['normal'] = True
            self._cacheFlags['view'] = True
            self._cacheFlags['iview'] = True
        if not inverse:
            toReturn = self._modelMatrix
        else:
            if self._cacheFlags['imodel']:
                self._invModelMatrix = invertMatrix(
                    self._modelMatrix, out=self._invModelMatrix, 
                    dtype=self.dtype)
                self._cacheFlags['imodel'] = False
            
            toReturn = self._invModelMatrix
        if out is not None:
            out[:, :] = toReturn[:, :]
            return out
        return toReturn 
[docs]
    def getViewMatrix(self, inverse=False, out=None):
        """Convert this pose into a view matrix.
        Creates a view matrix which transforms points into eye space using the
        current pose as the eye position in the scene. Furthermore, you can use
        view matrices for rendering shadows if light positions are defined
        as `RigidBodyPose` objects.
        Parameters
        ----------
        inverse : bool
            Return the inverse of the view matrix. Default is `False`.
        out : ndarray or None
            Optional 4x4 array to write values to. Values written are computed
            using 32-bit float precision regardless of the data type of `out`.
        Returns
        -------
        ndarray
            4x4 transformation matrix.
        """
        if self._cacheFlags['view']:  # needs update?
            # compute the view matrix
            rotMatrix = quatToMatrix(self._ori, dtype=self.dtype)
            transformedAxes = applyMatrix(
                rotMatrix, self._viewAxes, 
                dtype=self.dtype)
            fwdVec = transformedAxes[0, :] + self._pos
            upVec = transformedAxes[1, :]
            self._viewMatrix = lookAt(
                self._pos, fwdVec, upVec, 
                out=self._viewMatrix,
                dtype=self.dtype)
            self._cacheFlags['view'] = False
            self._cacheFlags['iview'] = True  # inverse needs update
        if not inverse:
            toReturn = self._viewMatrix
        else:
            if self._cacheFlags['iview']:
                self._invViewMatrix = invertMatrix(
                    self._viewMatrix, 
                    out=self._invViewMatrix, 
                    dtype=self.dtype)
                self._cacheFlags['iview'] = False
            
            toReturn = self._invViewMatrix
        if out is not None:
            out[:, :] = toReturn[:, :]
            return out
        return toReturn 
[docs]
    def transform(self, v, out=None):
        """Transform a vector using this pose.
        Parameters
        ----------
        v : array_like
            Vector to transform [x, y, z].
        out : ndarray or None, optional
            Optional array to write values to. Must have the same shape as
            `v`.
        Returns
        -------
        ndarray
            Transformed points.
        """
        return transform(
            self._pos, self._ori, points=v, out=out, dtype=self.dtype) 
[docs]
    def transformNormal(self, n):
        """Rotate a normal vector with respect to this pose.
        Rotates a normal vector `n` using the orientation quaternion at `ori`.
        Parameters
        ----------
        n : array_like
            Normal to rotate (1-D with length 3).
        Returns
        -------
        ndarray
            Rotated normal `n`.
        """
        pout = np.zeros((3,), dtype=self.dtype)
        pout[:] = n
        t = np.cross(self._ori[:3], n[:3]) * 2.0
        u = np.cross(self._ori[:3], t)
        t *= self._ori[3]
        pout[:3] += t
        pout[:3] += u
        return pout 
    def __invert__(self):
        """Operator `~` to invert the pose. Returns a `RigidBodyPose` object.
        """
        return RigidBodyPose(
            -self._pos, invertQuat(self._ori, dtype=self.dtype))
[docs]
    def invert(self):
        """Invert this pose.
        """
        self._ori = invertQuat(self._ori, dtype=self.dtype)
        self._pos *= -1.0 
[docs]
    def inverted(self):
        """Get a pose which is the inverse of this one.
        Returns
        -------
        RigidBodyPose
            This pose inverted.
        """
        return RigidBodyPose(
            -self._pos, invertQuat(self._ori, dtype=self.dtype)) 
[docs]
    def distanceTo(self, v):
        """Get the distance to a pose or point in scene units.
        Parameters
        ----------
        v : RigidBodyPose or array_like
            Pose or point [x, y, z] to compute distance to.
        Returns
        -------
        float
            Distance to `v` from this pose's origin.
        """
        if hasattr(v, 'pos'):  # v is pose-like object
            targetPos = v.pos
        else:
            targetPos = np.asarray(v[:3])
        return np.sqrt(np.sum(np.square(targetPos - self.pos))) 
[docs]
    def interp(self, end, s):
        """Interpolate between poses.
        Linear interpolation is used on position (Lerp) while the orientation
        has spherical linear interpolation (Slerp) applied taking the shortest
        arc on the hypersphere.
        Parameters
        ----------
        end : RigidBodyPose
            End pose.
        s : float
            Interpolation factor between interval 0.0 and 1.0.
        Returns
        -------
        RigidBodyPose
            Rigid body pose whose position and orientation is at `s` between
            this pose and `end`.
        """
        if not (hasattr(end, 'pos') and hasattr(end, 'ori')):
            raise TypeError("Object for `end` does not have attributes "
                            "`pos` and `ori`.")
        interpPos = lerp(self._pos, end.pos, s, dtype=self.dtype)
        interpOri = slerp(self._ori, end.ori, s, dtype=self.dtype)
        return RigidBodyPose(interpPos, interpOri) 
[docs]
    def alignTo(self, alignTo):
        """Align this pose to another point or pose.
        This sets the orientation of this pose to one which orients the forward
        axis towards `alignTo`.
        Parameters
        ----------
        alignTo : array_like or RigidBodyPose
            Position vector [x, y, z] or pose to align to.
        """
        if hasattr(alignTo, 'pos'):  # v is pose-like object
            targetPos = alignTo.pos
        else:
            targetPos = np.asarray(alignTo[:3]) # handle array_like
        fwd = np.asarray([0, 0, -1], dtype=self.dtype)
        toTarget = targetPos - self._pos
        invOri = invertQuat(self._ori, dtype=self.dtype)
        invPos = applyQuat(invOri, toTarget, dtype=self.dtype)
        invPos = normalize(invPos, dtype=self.dtype)
        self.ori = multQuat(
            self._ori, alignTo(fwd, invPos, dtype=self.dtype)) 
 
[docs]
class BoundingBox:
    """Class for representing object bounding boxes.
    A bounding box is a construct which represents a 3D rectangular volume about
    some pose, defined by its minimum and maximum extents in the reference frame
    of the pose. The axes of the bounding box are aligned to the axes of the
    world or the associated pose.
    Bounding boxes are primarily used for visibility testing; to determine if
    the extents of an object associated with a pose (eg. the vertices of a
    model) falls completely outside of the viewing frustum. If so, the model can
    be culled during rendering to avoid wasting CPU/GPU resources on objects not
    visible to the viewer.
    """
[docs]
    def __init__(self, extents=None, dtype=None):
        self._dtype = np.dtype(dtype).type if dtype is not None else DEFAULT_DTYPE
        self._extents = np.zeros((2, 3), self.dtype)
        self._posCorners = np.zeros((8, 4), self.dtype)
        if extents is not None:
            self._extents[0, :] = extents[0]
            self._extents[1, :] = extents[1]
        else:
            self.clear()
        self._computeCorners() 
[docs]
    def _computeCorners(self):
        """Compute the corners of the bounding box.
        These values are cached to speed up computations if extents hasn't been
        updated.
        """
        for i in range(8):
            self._posCorners[i, 0] = \
                
self._extents[1, 0] if (i & 1) else self._extents[0, 0]
            self._posCorners[i, 1] = \
                
self._extents[1, 1] if (i & 2) else self._extents[0, 1]
            self._posCorners[i, 2] = \
                
self._extents[1, 2] if (i & 4) else self._extents[0, 2]
            self._posCorners[i, 3] = 1.0 
    @property
    def dtype(self):
        """Data type used for computations and arrays (`numpy.dtype`).
        """
        # we use 32-bit float precision for all computations, this will be 
        # settable in the future
        return self._dtype
    @property
    def isValid(self):
        """`True` if the bounding box is valid."""
        return np.all(self._extents[0, :] <= self._extents[1, :])
    @property
    def extents(self):
        return self._extents
    @extents.setter
    def extents(self, value):
        self._extents[0, :] = value[0]
        self._extents[1, :] = value[1]
        self._computeCorners()
[docs]
    def fit(self, verts):
        """Fit the bounding box to vertices."""
        np.amin(verts, axis=0, out=self._extents[0])
        np.amax(verts, axis=0, out=self._extents[1])
        self._computeCorners() 
[docs]
    def clear(self):
        """Clear a bounding box, invalidating it."""
        self._extents[0, :] = np.finfo(self.dtype).max
        self._extents[1, :] = np.finfo(self.dtype).min
        self._computeCorners() 
 
# ------------------------------------------------------------------------------
# Vector Operations
#
[docs]
def length(v, squared=False, out=None, dtype=None):
    """Get the length of a vector.
    Parameters
    ----------
    v : array_like
        Vector to normalize, can be Nx2, Nx3, or Nx4. If a 2D array is
        specified, rows are treated as separate vectors.
    squared : bool, optional
        If ``True`` the squared length is returned. The default is ``False``.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    float or ndarray
        Length of vector `v`.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
        toReturn = np.array(v, dtype=dtype)
    else:
        toReturn = out
    v = np.asarray(v, dtype=dtype)
    if v.ndim == 2:
        assert v.shape[1] <= 4
        toReturn = np.zeros((v.shape[0],), dtype=dtype) if out is None else out
        v2d, vr = np.atleast_2d(v, toReturn)  # 2d view of array
        if squared:
            vr[:, :] = np.sum(np.square(v2d), axis=1)
        else:
            vr[:, :] = np.sqrt(np.sum(np.square(v2d), axis=1))
    elif v.ndim == 1:
        assert v.shape[0] <= 4
        if squared:
            toReturn = np.sum(np.square(v))
        else:
            toReturn = np.sqrt(np.sum(np.square(v)))
    else:
        raise ValueError("Input arguments have invalid dimensions.")
    return toReturn 
[docs]
def normalize(v, out=None, dtype=None):
    """Normalize a vector or quaternion.
    v : array_like
        Vector to normalize, can be Nx2, Nx3, or Nx4. If a 2D array is
        specified, rows are treated as separate vectors. All vectors should have
        nonzero length.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Normalized vector `v`.
    Notes
    -----
    * If the vector has length is zero, a vector of all zeros is returned after
      normalization.
    Examples
    --------
    Normalize a vector::
        v = [1., 2., 3., 4.]
        vn = normalize(v)
    The `normalize` function is vectorized. It's considerably faster to
    normalize large arrays of vectors than to call `normalize` separately for
    each one::
        v = np.random.uniform(-1.0, 1.0, (1000, 4,))  # 1000 length 4 vectors
        vn = np.zeros((1000, 4))  # place to write values
        normalize(v, out=vn)  # very fast!
        # don't do this!
        for i in range(1000):
            vn[i, :] = normalize(v[i, :])
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
        toReturn = np.array(v, dtype=dtype)
    else:
        toReturn = out
    v2d = np.atleast_2d(toReturn)  # 2d view of array
    norm = np.linalg.norm(v2d, axis=1)
    norm[norm == 0.0] = np.nan  # make sure if length==0 division succeeds
    v2d /= norm[:, np.newaxis]
    np.nan_to_num(v2d, copy=False)  # fix NaNs
    return toReturn 
[docs]
def orthogonalize(v, n, out=None, dtype=None):
    """Orthogonalize a vector relative to a normal vector.
    This function ensures that `v` is perpendicular (or orthogonal) to `n`.
    Parameters
    ----------
    v : array_like
        Vector to orthogonalize, can be Nx2, Nx3, or Nx4. If a 2D array is
        specified, rows are treated as separate vectors.
    n : array_like
        Normal vector, must have same shape as `v`.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Orthogonalized vector `v` relative to normal vector `n`.
    Warnings
    --------
    If `v` and `n` are the same, the direction of the perpendicular vector is
    indeterminate. The resulting vector is degenerate (all zeros).
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    v = np.asarray(v, dtype=dtype)
    n = np.asarray(n, dtype=dtype)
    if out is None:
        toReturn = np.zeros_like(v, dtype=dtype)
    else:
        toReturn = out
        toReturn.fill(0.0)
    v, n, vr = np.atleast_2d(v, n, toReturn)
    vr[:, :] = v
    vr[:, :] -= n * np.sum(n * v, axis=1)[:, np.newaxis]  # dot product
    normalize(vr, out=vr)
    return toReturn 
[docs]
def reflect(v, n, out=None, dtype=None):
    """Reflection of a vector.
    Get the reflection of `v` relative to normal `n`.
    Parameters
    ----------
    v : array_like
        Vector to reflect, can be Nx2, Nx3, or Nx4. If a 2D array is specified,
        rows are treated as separate vectors.
    n : array_like
        Normal vector, must have same shape as `v`.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Reflected vector `v` off normal `n`.
    """
    # based off https://github.com/glfw/glfw/blob/master/deps/linmath.h
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    v = np.asarray(v, dtype=dtype)
    n = np.asarray(n, dtype=dtype)
    if out is None:
        toReturn = np.zeros_like(v, dtype=dtype)
    else:
        toReturn = out
        toReturn.fill(0.0)
    v, n, vr = np.atleast_2d(v, n, toReturn)
    vr[:, :] = v
    vr[:, :] -= (dtype(2.0) * np.sum(n * v, axis=1))[:, np.newaxis] * n
    return toReturn 
[docs]
def dot(v0, v1, out=None, dtype=None):
    """Dot product of two vectors.
    The behaviour of this function depends on the format of the input arguments:
    * If `v0` and `v1` are 1D, the dot product is returned as a scalar and `out`
      is ignored.
    * If `v0` and `v1` are 2D, a 1D array of dot products between corresponding
      row vectors are returned.
    * If either `v0` and `v1` are 1D and 2D, an array of dot products
      between each row of the 2D vector and the 1D vector are returned.
    Parameters
    ----------
    v0, v1 : array_like
        Vector(s) to compute dot products of (e.g. [x, y, z]). `v0` must have
        equal or fewer dimensions than `v1`.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Dot product(s) of `v0` and `v1`.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    v0 = np.asarray(v0, dtype=dtype)
    v1 = np.asarray(v1, dtype=dtype)
    if v0.ndim == v1.ndim == 2 or v0.ndim == 2 and v1.ndim == 1:
        toReturn = np.zeros((v0.shape[0],), dtype=dtype) if out is None else out
        vr = np.atleast_2d(toReturn)  # make sure we have a 2d view
        vr[:] = np.sum(v1 * v0, axis=1)
    elif v0.ndim == v1.ndim == 1:
        toReturn = np.sum(v1 * v0)
    elif v0.ndim == 1 and v1.ndim == 2:
        toReturn = np.zeros((v1.shape[0],), dtype=dtype) if out is None else out
        vr = np.atleast_2d(toReturn)  # make sure we have a 2d view
        vr[:] = np.sum(v1 * v0, axis=1)
    else:
        raise ValueError("Input arguments have invalid dimensions.")
    return toReturn 
[docs]
def cross(v0, v1, out=None, dtype=None):
    """Cross product of 3D vectors.
    The behavior of this function depends on the dimensions of the inputs:
    * If `v0` and `v1` are 1D, the cross product is returned as 1D vector.
    * If `v0` and `v1` are 2D, a 2D array of cross products between
      corresponding row vectors are returned.
    * If either `v0` and `v1` are 1D and 2D, an array of cross products
      between each row of the 2D vector and the 1D vector are returned.
    Parameters
    ----------
    v0, v1 : array_like
        Vector(s) in form [x, y, z] or [x, y, z, 1].
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Cross product of `v0` and `v1`.
    Notes
    -----
    * If input vectors are 4D, the last value of cross product vectors is always
      set to one.
    * If input vectors `v0` and `v1` are Nx3 and `out` is Nx4, the cross product
      is computed and the last column of `out` is filled with ones.
    Examples
    --------
    Find the cross product of two vectors::
        a = normalize([1, 2, 3])
        b = normalize([3, 2, 1])
        c = cross(a, b)
    If input arguments are 2D, the function returns the cross products of
    corresponding rows::
        # create two 6x3 arrays with random numbers
        shape = (6, 3,)
        a = normalize(np.random.uniform(-1.0, 1.0, shape))
        b = normalize(np.random.uniform(-1.0, 1.0, shape))
        cprod = np.zeros(shape)  # output has the same shape as inputs
        cross(a, b, out=cprod)
    If a 1D and 2D vector are specified, the cross product of each row of the
    2D array and the 1D array is returned as a 2D array::
        a = normalize([1, 2, 3])
        b = normalize(np.random.uniform(-1.0, 1.0, (6, 3,)))
        cprod = np.zeros(a.shape)
        cross(a, b, out=cprod)
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    v0 = np.asarray(v0, dtype=dtype)
    v1 = np.asarray(v1, dtype=dtype)
    if v0.ndim == v1.ndim == 2:  # 2D x 2D
        assert v0.shape == v1.shape
        toReturn = np.zeros(v0.shape, dtype=dtype) if out is None else out
        vr = np.atleast_2d(toReturn)
        vr[:, 0] = v0[:, 1] * v1[:, 2] - v0[:, 2] * v1[:, 1]
        vr[:, 1] = v0[:, 2] * v1[:, 0] - v0[:, 0] * v1[:, 2]
        vr[:, 2] = v0[:, 0] * v1[:, 1] - v0[:, 1] * v1[:, 0]
        if vr.shape[1] == 4:
            vr[:, 3] = dtype(1.0)
    elif v0.ndim == v1.ndim == 1:  # 1D x 1D
        assert v0.shape == v1.shape
        toReturn = np.zeros(v0.shape, dtype=dtype) if out is None else out
        toReturn[0] = v0[1] * v1[2] - v0[2] * v1[1]
        toReturn[1] = v0[2] * v1[0] - v0[0] * v1[2]
        toReturn[2] = v0[0] * v1[1] - v0[1] * v1[0]
        if toReturn.shape[0] == 4:
            toReturn[3] = dtype(1.0)
    elif v0.ndim == 2 and v1.ndim == 1:  # 2D x 1D
        toReturn = np.zeros(v0.shape, dtype=dtype) if out is None else out
        vr = np.atleast_2d(toReturn)
        vr[:, 0] = v0[:, 1] * v1[2] - v0[:, 2] * v1[1]
        vr[:, 1] = v0[:, 2] * v1[0] - v0[:, 0] * v1[2]
        vr[:, 2] = v0[:, 0] * v1[1] - v0[:, 1] * v1[0]
        if vr.shape[1] == 4:
            vr[:, 3] = dtype(1.0)
    elif v0.ndim == 1 and v1.ndim == 2:  # 1D x 2D
        toReturn = np.zeros(v1.shape, dtype=dtype) if out is None else out
        vr = np.atleast_2d(toReturn)
        vr[:, 0] = v1[:, 2] * v0[1] - v1[:, 1] * v0[2]
        vr[:, 1] = v1[:, 0] * v0[2] - v1[:, 2] * v0[0]
        vr[:, 2] = v1[:, 1] * v0[0] - v1[:, 0] * v0[1]
        if vr.shape[1] == 4:
            vr[:, 3] = dtype(1.0)
    else:
        raise ValueError("Input arguments have incorrect dimensions.")
    return toReturn 
[docs]
def project(v0, v1, out=None, dtype=None):
    """Project a vector onto another.
    Parameters
    ----------
    v0 : array_like
        Vector can be Nx2, Nx3, or Nx4. If a 2D array is specified, rows are
        treated as separate vectors.
    v1 : array_like
        Vector to project onto `v0`.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray or float
        Projection of vector `v0` on `v1`.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    v0 = np.asarray(v0, dtype=dtype)
    v1 = np.asarray(v1, dtype=dtype)
    if v0.ndim == v1.ndim == 2 or v0.ndim == 1 and v1.ndim == 2:
        toReturn = np.zeros_like(v1, dtype=dtype) if out is None else out
        toReturn[:, :] = v1[:, :]
        toReturn *= (dot(v0, v1, dtype=dtype) / length(v1))[:, np.newaxis]
    elif v0.ndim == v1.ndim == 1:
        toReturn = v1 * (dot(v0, v1, dtype=dtype) / np.sum(np.square(v1)))
    elif v0.ndim == 2 and v1.ndim == 1:
        toReturn = np.zeros_like(v0, dtype=dtype) if out is None else out
        toReturn[:, :] = v1[:]
        toReturn *= (dot(v0, v1, dtype=dtype) / length(v1))[:, np.newaxis]
    else:
        raise ValueError("Input arguments have invalid dimensions.")
    toReturn += 0.0  # remove negative zeros
    return toReturn 
[docs]
def lerp(v0, v1, t, out=None, dtype=None):
    """Linear interpolation (LERP) between two vectors/coordinates.
    Parameters
    ----------
    v0 : array_like
        Initial vector/coordinate. Can be 2D where each row is a point.
    v1 : array_like
        Final vector/coordinate. Must be the same shape as `v0`.
    t : float
        Interpolation weight factor [0, 1].
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Vector  at `t` with same shape as `v0` and `v1`.
    Examples
    --------
    Find the coordinate of the midpoint between two vectors::
        u = [0., 0., 0.]
        v = [0., 0., 1.]
        midpoint = lerp(u, v, 0.5)  # 0.5 to interpolate half-way between points
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    t = dtype(t)
    t0 = dtype(1.0) - t
    v0 = np.asarray(v0, dtype=dtype)
    v1 = np.asarray(v1, dtype=dtype)
    toReturn = np.zeros_like(v0, dtype=dtype) if out is None else out
    v0, v1, vr = np.atleast_2d(v0, v1, toReturn)
    vr[:, :] = v0 * t0
    vr[:, :] += v1 * t
    return toReturn 
[docs]
def distance(v0, v1, out=None, dtype=None):
    """Get the distance between vectors/coordinates.
    The behaviour of this function depends on the format of the input arguments:
    * If `v0` and `v1` are 1D, the distance is returned as a scalar and `out` is
      ignored.
    * If `v0` and `v1` are 2D, an array of distances between corresponding row
      vectors are returned.
    * If either `v0` and `v1` are 1D and 2D, an array of distances
      between each row of the 2D vector and the 1D vector are returned.
    Parameters
    ----------
    v0, v1 : array_like
        Vectors to compute the distance between.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Distance between vectors `v0` and `v1`.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    v0 = np.asarray(v0, dtype=dtype)
    v1 = np.asarray(v1, dtype=dtype)
    if v0.ndim == v1.ndim == 2 or (v0.ndim == 2 and v1.ndim == 1):
        dist = np.zeros((v1.shape[0],), dtype=dtype) if out is None else out
        dist[:] = np.sqrt(np.sum(np.square(v1 - v0), axis=1))
    elif v0.ndim == v1.ndim == 1:
        dist = np.sqrt(np.sum(np.square(v1 - v0)))
    elif v0.ndim == 1 and v1.ndim == 2:
        dist = np.zeros((v1.shape[0],), dtype=dtype) if out is None else out
        dist[:] = np.sqrt(np.sum(np.square(v0 - v1), axis=1))
    else:
        raise ValueError("Input arguments have invalid dimensions.")
    return dist 
[docs]
def perp(v, n, norm=True, out=None, dtype=None):
    """Project `v` to be a perpendicular axis of `n`.
    Parameters
    ----------
    v : array_like
        Vector to project [x, y, z], may be Nx3.
    n : array_like
        Normal vector [x, y, z], may be Nx3.
    norm : bool
        Normalize the resulting axis. Default is `True`.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Perpendicular axis of `n` from `v`.
    Examples
    --------
    Determine the local `up` (y-axis) of a surface or plane given `normal`::
        normal = [0., 0.70710678, 0.70710678]
        up = [1., 0., 0.]
        yaxis = perp(up, normal)
    Do a cross product to get the x-axis perpendicular to both::
        xaxis = cross(yaxis, normal)
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    v = np.asarray(v, dtype=dtype)
    n = np.asarray(n, dtype=dtype)
    toReturn = np.zeros_like(v, dtype=dtype) if out is None else out
    v2d, n2d, r2d = np.atleast_2d(v, n, toReturn)
    # from GLM `glm/gtx/perpendicular.inl`
    r2d[:, :] = v2d - project(v2d, n2d, dtype=dtype)
    if norm:
        normalize(toReturn, out=toReturn)
    toReturn += 0.0  # clear negative zeros
    return toReturn 
[docs]
def bisector(v0, v1, norm=False, out=None, dtype=None):
    """Get the angle bisector.
    Computes a vector which bisects the angle between `v0` and `v1`. Input
    vectors `v0` and `v1` must be non-zero.
    Parameters
    ----------
    v0, v1 : array_like
        Vectors to bisect [x, y, z]. Must be non-zero in length and have the
        same shape. Inputs can be Nx3 where the bisector for corresponding
        rows will be returned.
    norm : bool, optional
        Normalize the resulting bisector. Default is `False`.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Bisecting vector [x, y, z].
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    v0 = np.asarray(v0, dtype=dtype)
    v1 = np.asarray(v1, dtype=dtype)
    assert v0.shape == v1.shape
    toReturn = np.zeros_like(v0, dtype=dtype) if out is None else out
    v02d, v12d, r2d = np.atleast_2d(v0, v1, toReturn)
    r2d[:, :] = v02d * length(v12d, dtype=dtype)[:, np.newaxis] + \
                
v12d * length(v02d, dtype=dtype)[:, np.newaxis]
    if norm:
        normalize(r2d, out=r2d)
    return toReturn 
[docs]
def angleTo(v, point, degrees=True, out=None, dtype=None):
    """Get the relative angle to a point from a vector.
    The behaviour of this function depends on the format of the input arguments:
    * If `v0` and `v1` are 1D, the angle is returned as a scalar and `out` is
      ignored.
    * If `v0` and `v1` are 2D, an array of angles between corresponding row
      vectors are returned.
    * If either `v0` and `v1` are 1D and 2D, an array of angles
      between each row of the 2D vector and the 1D vector are returned.
    Parameters
    ----------
    v : array_like
        Direction vector [x, y, z].
    point : array_like
        Point(s) to compute angle to from vector `v`.
    degrees : bool, optional
        Return the resulting angles in degrees. If `False`, angles will be
        returned in radians. Default is `True`.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Distance between vectors `v0` and `v1`.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    v = np.asarray(v, dtype=dtype)
    point = np.asarray(point, dtype=dtype)
    if v.ndim == point.ndim == 2 or (v.ndim == 2 and point.ndim == 1):
        angle = np.zeros((v.shape[0],), dtype=dtype) if out is None else out
        u = np.sqrt(length(v, squared=True, dtype=dtype) *
                    length(point, squared=True, dtype=dtype))
        angle[:] = np.arccos(dot(v, point, dtype=dtype) / u)
    elif v.ndim == 1 and point.ndim == 2:
        angle = np.zeros((point.shape[0],), dtype=dtype) if out is None else out
        u = np.sqrt(length(v, squared=True, dtype=dtype) *
                    length(point, squared=True, dtype=dtype))
        angle[:] = np.arccos(dot(v, point, dtype=dtype) / u)
    elif v.ndim == point.ndim == 1:
        u = np.sqrt(length(v, squared=True, dtype=dtype) *
                    length(point, squared=True, dtype=dtype))
        angle = np.arccos(dot(v, point, dtype=dtype) / u)
    else:
        raise ValueError("Input arguments have invalid dimensions.")
    return np.degrees(angle) if degrees else angle 
def sortClockwise(verts):
    """Sort vertices clockwise from 12 O'Clock (aka vertex (0, 1)).
    Parameters
    ----------
    verts : array
        Array of vertices to sort.
    Returns
    -------
    array
        Vertices sorted clockwise from 12 O'Clock.
    """
    # Blank array of angles
    angles = []
    # Calculate angle of each vertex
    for vert in verts:
        # Get angle
        ang = angleTo(v=[0, 1], point=vert)
        # Flip angle if we're past 6 O'clock
        if vert[0] < 0:
            ang = 360 - ang
        # Append to angles array
        angles.append(ang)
    # Sort vertices by angles array values
    verts = [x for _, x in sorted(zip(angles, verts), key=lambda pair: pair[0])]
    return verts
[docs]
def surfaceNormal(tri, norm=True, out=None, dtype=None):
    """Compute the surface normal of a given triangle.
    Parameters
    ----------
    tri : array_like
        Triangle vertices as 2D (3x3) array [p0, p1, p2] where each vertex is a
        length 3 array [vx, xy, vz]. The input array can be 3D (Nx3x3) to
        specify multiple triangles.
    norm : bool, optional
        Normalize computed surface normals if ``True``, default is ``True``.
    out : ndarray, optional
        Optional output array. Must have one fewer dimensions than `tri`. The
        shape of the last dimension must be 3.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Surface normal of triangle `tri`.
    Examples
    --------
    Compute the surface normal of a triangle::
        vertices = [[-1., 0., 0.], [0., 1., 0.], [1, 0, 0]]
        norm = surfaceNormal(vertices)
    Find the normals for multiple triangles, and put results in a pre-allocated
    array::
        vertices = [[[-1., 0., 0.], [0., 1., 0.], [1, 0, 0]],  # 2x3x3
                    [[1., 0., 0.], [0., 1., 0.], [-1, 0, 0]]]
        normals = np.zeros((2, 3))  # normals for two triangles
        surfaceNormal(vertices, out=normals)
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    tris = np.asarray(tri, dtype=dtype)
    if tris.ndim == 2:
        tris = np.expand_dims(tri, axis=0)
    if tris.shape[0] == 1:
        toReturn = np.zeros((3,), dtype=dtype) if out is None else out
    else:
        if out is None:
            toReturn = np.zeros((tris.shape[0], 3), dtype=dtype)
        else:
            toReturn = out
    # from https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal
    nr = np.atleast_2d(toReturn)
    u = tris[:, 1, :] - tris[:, 0, :]
    v = tris[:, 2, :] - tris[:, 1, :]
    nr[:, 0] = u[:, 1] * v[:, 2] - u[:, 2] * v[:, 1]
    nr[:, 1] = u[:, 2] * v[:, 0] - u[:, 0] * v[:, 2]
    nr[:, 2] = u[:, 0] * v[:, 1] - u[:, 1] * v[:, 0]
    if norm:
        normalize(nr, out=nr)
    return toReturn 
[docs]
def surfaceBitangent(tri, uv, norm=True, out=None, dtype=None):
    """Compute the bitangent vector of a given triangle.
    This function can be used to generate bitangent vertex attributes for normal
    mapping. After computing bitangents, one may orthogonalize them with vertex
    normals using the :func:`orthogonalize` function, or within the fragment
    shader. Uses texture coordinates at each triangle vertex to determine the
    direction of the vector.
    Parameters
    ----------
    tri : array_like
        Triangle vertices as 2D (3x3) array [p0, p1, p2] where each vertex is a
        length 3 array [vx, xy, vz]. The input array can be 3D (Nx3x3) to
        specify multiple triangles.
    uv : array_like
        Texture coordinates associated with each face vertex as a 2D array (3x2)
        where each texture coordinate is length 2 array [u, v]. The input array
        can be 3D (Nx3x2) to specify multiple texture coordinates if multiple
        triangles are specified.
    norm : bool, optional
        Normalize computed bitangents if ``True``, default is ``True``.
    out : ndarray, optional
        Optional output array. Must have one fewer dimensions than `tri`. The
        shape of the last dimension must be 3.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Surface bitangent of triangle `tri`.
    Examples
    --------
    Computing the bitangents for two triangles from vertex and texture
    coordinates (UVs)::
        # array of triangle vertices (2x3x3)
        tri = np.asarray([
            [(-1.0, 1.0, 0.0), (-1.0, -1.0, 0.0), (1.0, -1.0, 0.0)],   # 1
            [(-1.0, 1.0, 0.0), (-1.0, -1.0, 0.0), (1.0, -1.0, 0.0)]])  # 2
        # array of triangle texture coordinates (2x3x2)
        uv = np.asarray([
            [(0.0, 1.0), (0.0, 0.0), (1.0, 0.0)],   # 1
            [(0.0, 1.0), (0.0, 0.0), (1.0, 0.0)]])  # 2
        bitangents = surfaceBitangent(tri, uv, norm=True)  # bitangets (2x3)
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    tris = np.asarray(tri, dtype=dtype)
    if tris.ndim == 2:
        tris = np.expand_dims(tri, axis=0)
    if tris.shape[0] == 1:
        toReturn = np.zeros((3,), dtype=dtype) if out is None else out
    else:
        if out is None:
            toReturn = np.zeros((tris.shape[0], 3), dtype=dtype)
        else:
            toReturn = out
    uvs = np.asarray(uv, dtype=dtype)
    if uvs.ndim == 2:
        uvs = np.expand_dims(uvs, axis=0)
    # based off the implementation from
    # https://learnopengl.com/Advanced-Lighting/Normal-Mapping
    e1 = tris[:, 1, :] - tris[:, 0, :]
    e2 = tris[:, 2, :] - tris[:, 0, :]
    d1 = uvs[:, 1, :] - uvs[:, 0, :]
    d2 = uvs[:, 2, :] - uvs[:, 0, :]
    # compute the bitangent
    nr = np.atleast_2d(toReturn)
    nr[:, 0] = -d2[:, 0] * e1[:, 0] + d1[:, 0] * e2[:, 0]
    nr[:, 1] = -d2[:, 0] * e1[:, 1] + d1[:, 0] * e2[:, 1]
    nr[:, 2] = -d2[:, 0] * e1[:, 2] + d1[:, 0] * e2[:, 2]
    f = dtype(1.0) / (d1[:, 0] * d2[:, 1] - d2[:, 0] * d1[:, 1])
    nr *= f[:, np.newaxis]
    if norm:
        normalize(toReturn, out=toReturn, dtype=dtype)
    return toReturn 
[docs]
def surfaceTangent(tri, uv, norm=True, out=None, dtype=None):
    """Compute the tangent vector of a given triangle.
    This function can be used to generate tangent vertex attributes for normal
    mapping. After computing tangents, one may orthogonalize them with vertex
    normals using the :func:`orthogonalize` function, or within the fragment
    shader. Uses texture coordinates at each triangle vertex to determine the
    direction of the vector.
    Parameters
    ----------
    tri : array_like
        Triangle vertices as 2D (3x3) array [p0, p1, p2] where each vertex is a
        length 3 array [vx, xy, vz]. The input array can be 3D (Nx3x3) to
        specify multiple triangles.
    uv : array_like
        Texture coordinates associated with each face vertex as a 2D array (3x2)
        where each texture coordinate is length 2 array [u, v]. The input array
        can be 3D (Nx3x2) to specify multiple texture coordinates if multiple
        triangles are specified. If so `N` must be the same size as the first
        dimension of `tri`.
    norm : bool, optional
        Normalize computed tangents if ``True``, default is ``True``.
    out : ndarray, optional
        Optional output array. Must have one fewer dimensions than `tri`. The
        shape of the last dimension must be 3.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Surface normal of triangle `tri`.
    Examples
    --------
    Compute surface normals, tangents, and bitangents for a list of triangles::
        # triangle vertices (2x3x3)
        vertices = [[[-1., 0., 0.], [0., 1., 0.], [1, 0, 0]],
                    [[1., 0., 0.], [0., 1., 0.], [-1, 0, 0]]]
        # array of triangle texture coordinates (2x3x2)
        uv = np.asarray([
            [(0.0, 1.0), (0.0, 0.0), (1.0, 0.0)],   # 1
            [(0.0, 1.0), (0.0, 0.0), (1.0, 0.0)]])  # 2
        normals = surfaceNormal(vertices)
        tangents = surfaceTangent(vertices, uv)
        bitangents = cross(normals, tangents)  # or use `surfaceBitangent`
    Orthogonalize a surface tangent with a vertex normal vector to get the
    vertex tangent and bitangent vectors::
        vertexTangent = orthogonalize(faceTangent, vertexNormal)
        vertexBitangent = cross(vertexTangent, vertexNormal)
    Ensure computed vectors have the same handedness, if not, flip the tangent
    vector (important for applications like normal mapping)::
        # tangent, bitangent, and normal are 2D
        tangent[dot(cross(normal, tangent), bitangent) < 0.0, :] *= -1.0
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    tris = np.asarray(tri, dtype=dtype)
    if tris.ndim == 2:
        tris = np.expand_dims(tri, axis=0)
    if tris.shape[0] == 1:
        toReturn = np.zeros((3,), dtype=dtype) if out is None else out
    else:
        if out is None:
            toReturn = np.zeros((tris.shape[0], 3), dtype=dtype)
        else:
            toReturn = out
    uvs = np.asarray(uv, dtype=dtype)
    if uvs.ndim == 2:
        uvs = np.expand_dims(uvs, axis=0)
    # based off the implementation from
    # https://learnopengl.com/Advanced-Lighting/Normal-Mapping
    e1 = tris[:, 1, :] - tris[:, 0, :]
    e2 = tris[:, 2, :] - tris[:, 0, :]
    d1 = uvs[:, 1, :] - uvs[:, 0, :]
    d2 = uvs[:, 2, :] - uvs[:, 0, :]
    # compute the bitangent
    nr = np.atleast_2d(toReturn)
    nr[:, 0] = d2[:, 1] * e1[:, 0] - d1[:, 1] * e2[:, 0]
    nr[:, 1] = d2[:, 1] * e1[:, 1] - d1[:, 1] * e2[:, 1]
    nr[:, 2] = d2[:, 1] * e1[:, 2] - d1[:, 1] * e2[:, 2]
    f = dtype(1.0) / (d1[:, 0] * d2[:, 1] - d2[:, 0] * d1[:, 1])
    nr *= f[:, np.newaxis]
    if norm:
        normalize(toReturn, out=toReturn, dtype=dtype)
    return toReturn 
[docs]
def vertexNormal(faceNorms, norm=True, out=None, dtype=None):
    """Compute a vertex normal from shared triangles.
    This function computes a vertex normal by averaging the surface normals of
    the triangles it belongs to. If model has no vertex normals, first use
    :func:`surfaceNormal` to compute them, then run :func:`vertexNormal` to
    compute vertex normal attributes.
    While this function is mainly used to compute vertex normals, it can also
    be supplied triangle tangents and bitangents.
    Parameters
    ----------
    faceNorms : array_like
        An array (Nx3) of surface normals.
    norm : bool, optional
        Normalize computed normals if ``True``, default is ``True``.
    out : ndarray, optional
        Optional output array.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Vertex normal.
    Examples
    --------
    Compute a vertex normal from the face normals of the triangles it belongs
    to::
        normals = [[1., 0., 0.], [0., 1., 0.]]  # adjacent face normals
        vertexNorm = vertexNormal(normals)
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    triNorms2d = np.atleast_2d(np.asarray(faceNorms, dtype=dtype))
    nFaces = triNorms2d.shape[0]
    if out is None:
        toReturn = np.zeros((3,), dtype=dtype)
    else:
        toReturn = out
    toReturn[0] = np.sum(triNorms2d[:, 0])
    toReturn[1] = np.sum(triNorms2d[:, 1])
    toReturn[2] = np.sum(triNorms2d[:, 2])
    toReturn /= nFaces
    if norm:
        normalize(toReturn, out=toReturn, dtype=dtype)
    return toReturn 
[docs]
def fixTangentHandedness(tangents, normals, bitangents, out=None, dtype=None):
    """Ensure the handedness of tangent vectors are all the same.
    Often 3D computed tangents may not have the same handedness due to how
    texture coordinates are specified. This function takes input surface vectors
    are ensures that tangents have the same handedness. Use this function if you
    notice that normal mapping shading appears reversed with respect to the
    incident light direction. The output array of corrected tangents can be used
    inplace of the original.
    Parameters
    ----------
    tangents, normals, bitangents : array_like
        Input Nx3 arrays of triangle tangents, normals and bitangents. All
        arrays must have the same size.
    out : ndarray, optional
        Optional output array for tangents. If not specified, a new array of
        tangents will be allocated.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Array of tangents with handedness corrected.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    tangents = np.asarray(tangents, dtype=dtype)
    normals = np.asarray(normals, dtype=dtype)
    bitangents = np.asarray(bitangents, dtype=dtype)
    toReturn = np.zeros_like(tangents, dtype=dtype) if out is None else out
    toReturn[:, :] = tangents
    toReturn[dot(cross(normals, tangents, dtype=dtype),
                 bitangents, dtype=dtype) < 0.0, :] *= -1.0
    return toReturn 
# ------------------------------------------------------------------------------
# Collision Detection, Interaction and Kinematics
#
[docs]
def fitBBox(points, dtype=None):
    """Fit an axis-aligned bounding box around points.
    This computes the minimum and maximum extents for a bounding box to
    completely enclose `points`. Keep in mind the output in bounds are
    axis-aligned and may not optimally fits the points (i.e. fits the points
    with the minimum required volume). However, this should work well enough for
    applications such as visibility testing (see
    `~psychopy.tools.viewtools.volumeVisible` for more information..
    Parameters
    ----------
    points : array_like
        Nx3 or Nx4 array of points to fit the bounding box to.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Extents (mins, maxs) as a 2x3 array.
    See Also
    --------
    computeBBoxCorners : Convert bounding box extents to corners.
    """
    dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    points = np.asarray(points, dtype=dtype)
    extents = np.zeros((2, 3), dtype=dtype)
    extents[0, :] = (np.min(points[:, 0]),
                     np.min(points[:, 1]),
                     np.min(points[:, 2]))
    extents[1, :] = (np.max(points[:, 0]),
                     np.max(points[:, 1]),
                     np.max(points[:, 2]))
    return extents 
[docs]
def computeBBoxCorners(extents, dtype=None):
    """Get the corners of an axis-aligned bounding box.
    Parameters
    ----------
    extents : array_like
        2x3 array indicating the minimum and maximum extents of the bounding
        box.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        8x4 array of points defining the corners of the bounding box.
    Examples
    --------
    Compute the corner points of a bounding box::
        minExtent = [-1, -1, -1]
        maxExtent = [1, 1, 1]
        corners = computeBBoxCorners([minExtent, maxExtent])
        # [[ 1.  1.  1.  1.]
        #  [-1.  1.  1.  1.]
        #  [ 1. -1.  1.  1.]
        #  [-1. -1.  1.  1.]
        #  [ 1.  1. -1.  1.]
        #  [-1.  1. -1.  1.]
        #  [ 1. -1. -1.  1.]
        #  [-1. -1. -1.  1.]]
    """
    extents = np.asarray(extents, dtype=dtype)
    assert extents.shape == (2, 3,)
    corners = np.zeros((8, 4), dtype=dtype)
    idx = np.arange(0, 8)
    corners[:, 0] = np.where(idx[:] & 1, extents[0, 0], extents[1, 0])
    corners[:, 1] = np.where(idx[:] & 2, extents[0, 1], extents[1, 1])
    corners[:, 2] = np.where(idx[:] & 4, extents[0, 2], extents[1, 2])
    corners[:, 3] = 1.0
    return corners 
[docs]
def intersectRayPlane(rayOrig, rayDir, planeOrig, planeNormal, dtype=None):
    """Get the point which a ray intersects a plane.
    Parameters
    ----------
    rayOrig : array_like
        Origin of the line in space [x, y, z].
    rayDir : array_like
        Direction vector of the line [x, y, z].
    planeOrig : array_like
        Origin of the plane to test [x, y, z].
    planeNormal : array_like
        Normal vector of the plane [x, y, z].
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    tuple or None
        Position (`ndarray`) in space which the line intersects the plane and
        the distance the intersect occurs from the origin (`float`). `None` is
        returned if the line does not intersect the plane at a single point or
        at all.
    Examples
    --------
    Find the point in the scene a ray intersects the plane::
        # plane information
        planeOrigin = [0, 0, 0]
        planeNormal = [0, 0, 1]
        planeUpAxis = perp([0, 1, 0], planeNormal)
        # ray
        rayDir = [0, 0, -1]
        rayOrigin = [0, 0, 5]
        # get the intersect and distance in 3D world space
        pnt, dist = intersectRayPlane(rayOrigin, rayDir, planeOrigin, planeNormal)
    """
    dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    # based off the method from GLM
    rayOrig = np.asarray(rayOrig, dtype=dtype)
    rayDir = np.asarray(rayDir, dtype=dtype)
    planeOrig = np.asarray(planeOrig, dtype=dtype)
    planeNormal = np.asarray(planeNormal, dtype=dtype)
    denom = dot(rayDir, planeNormal, dtype=dtype)
    if denom == 0.0:
        return None
    # distance to collision
    dist = dot((planeOrig - rayOrig), planeNormal, dtype=dtype) / denom
    intersect = dist * rayDir + rayOrig
    return intersect, dist 
[docs]
def intersectRaySphere(rayOrig, rayDir, sphereOrig=(0., 0., 0.), sphereRadius=1.0,
                       dtype=None):
    """Calculate the points which a ray/line intersects a sphere (if any).
    Get the 3D coordinate of the point which the ray intersects the sphere and
    the distance to the point from `orig`. The nearest point is returned if
    the line intersects the sphere at multiple locations. All coordinates should
    be in world/scene units.
    Parameters
    ----------
    rayOrig : array_like
        Origin of the ray in space [x, y, z].
    rayDir : array_like
        Direction vector of the ray [x, y, z], should be normalized.
    sphereOrig : array_like
        Origin of the sphere to test [x, y, z].
    sphereRadius : float
        Sphere radius to test in scene units.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    tuple
        Coordinate in world space of the intersection and distance in scene
        units from `orig`. Returns `None` if there is no intersection.
    """
    # based off example from https://antongerdelan.net/opengl/raycasting.html
    dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    rayOrig = np.asarray(rayOrig, dtype=dtype)
    rayDir = np.asarray(rayDir, dtype=dtype)
    sphereOrig = np.asarray(sphereOrig, dtype=dtype)
    sphereRadius = np.asarray(sphereRadius, dtype=dtype)
    d = rayOrig - sphereOrig
    b = np.dot(rayDir, d)
    c = np.dot(d, d) - np.square(sphereRadius)
    b2mc = np.square(b) - c  # determinant
    if b2mc < 0.0:  # no roots, ray does not intersect sphere
        return None
    u = np.sqrt(b2mc)
    nearestDist = np.minimum(-b + u, -b - u)
    pos = (rayDir * nearestDist) + rayOrig
    return pos, nearestDist 
[docs]
def intersectRayAABB(rayOrig, rayDir, boundsOffset, boundsExtents, dtype=None):
    """Find the point a ray intersects an axis-aligned bounding box (AABB).
    Parameters
    ----------
    rayOrig : array_like
        Origin of the ray in space [x, y, z].
    rayDir : array_like
        Direction vector of the ray [x, y, z], should be normalized.
    boundsOffset : array_like
        Offset of the bounding box in the scene [x, y, z].
    boundsExtents : array_like
        Minimum and maximum extents of the bounding box.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    tuple
        Coordinate in world space of the intersection and distance in scene
        units from `rayOrig`. Returns `None` if there is no intersection.
    Examples
    --------
    Get the point on an axis-aligned bounding box that the cursor is over and
    place a 3D stimulus there. The eye location is defined by `RigidBodyPose`
    object `camera`::
        # get the mouse position on-screen
        mx, my = mouse.getPos()
        # find the point which the ray intersects on the box
        result = intersectRayAABB(
            camera.pos,
            camera.transformNormal(win.coordToRay((mx, my))),
            myStim.pos,
            myStim.thePose.bounds.extents)
        # if the ray intersects, set the position of the cursor object to it
        if result is not None:
            cursorModel.thePose.pos = result[0]
            cursorModel.draw()  # don't draw anything if there is no intersect
    Note that if the model is rotated, the bounding box may not be aligned
    anymore with the axes. Use `intersectRayOBB` if your model rotates.
    """
    # based of the example provided here:
    # https://www.scratchapixel.com/lessons/3d-basic-rendering/
    # minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection
    dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    rayOrig = np.asarray(rayOrig, dtype=dtype)
    rayDir = np.asarray(rayDir, dtype=dtype)
    boundsOffset = np.asarray(boundsOffset, dtype=dtype)
    extents = np.asarray(boundsExtents, dtype=dtype) + boundsOffset
    invDir = 1.0 / rayDir
    sign = np.zeros((3,), dtype=int)
    sign[invDir < 0.0] = 1
    tmin = (extents[sign[0], 0] - rayOrig[0]) * invDir[0]
    tmax = (extents[1 - sign[0], 0] - rayOrig[0]) * invDir[0]
    tymin = (extents[sign[1], 1] - rayOrig[1]) * invDir[1]
    tymax = (extents[1 - sign[1], 1] - rayOrig[1]) * invDir[1]
    if tmin > tymax or tymin > tmax:
        return None
    if tymin > tmin:
        tmin = tymin
    if tymax < tmax:
        tmax = tymax
    tzmin = (extents[sign[2], 2] - rayOrig[2]) * invDir[2]
    tzmax = (extents[1 - sign[2], 2] - rayOrig[2]) * invDir[2]
    if tmin > tzmax or tzmin > tmax:
        return None
    if tzmin > tmin:
        tmin = tzmin
    if tzmax < tmax:
        tmax = tzmax
    if tmin < 0:
        if tmax < 0:
            return None
    return (rayDir * tmin) + rayOrig, tmin 
[docs]
def intersectRayOBB(rayOrig, rayDir, modelMatrix, boundsExtents, dtype=None):
    """Find the point a ray intersects an oriented bounding box (OBB).
    Parameters
    ----------
    rayOrig : array_like
        Origin of the ray in space [x, y, z].
    rayDir : array_like
        Direction vector of the ray [x, y, z], should be normalized.
    modelMatrix : array_like
        4x4 model matrix of the object and bounding box.
    boundsExtents : array_like
        Minimum and maximum extents of the bounding box.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    tuple
        Coordinate in world space of the intersection and distance in scene
        units from `rayOrig`. Returns `None` if there is no intersection.
    Examples
    --------
    Get the point on an oriented bounding box that the cursor is over and place
    a 3D stimulus there. The eye location is defined by `RigidBodyPose` object
    `camera`::
        # get the mouse position on-screen
        mx, my = mouse.getPos()
        # find the point which the ray intersects on the box
        result = intersectRayOBB(
            camera.pos,
            camera.transformNormal(win.coordToRay((mx, my))),
            myStim.thePose.getModelMatrix(),
            myStim.thePose.bounds.extents)
        # if the ray intersects, set the position of the cursor object to it
        if result is not None:
            cursorModel.thePose.pos = result[0]
            cursorModel.draw()  # don't draw anything if there is no intersect
    """
    # based off algorithm:
    # https://www.opengl-tutorial.org/miscellaneous/clicking-on-objects/
    # picking-with-custom-ray-obb-function/
    dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    rayOrig = np.asarray(rayOrig, dtype=dtype)
    rayDir = np.asarray(rayDir, dtype=dtype)
    modelMatrix = np.asarray(modelMatrix, dtype=dtype)
    boundsOffset = np.asarray(modelMatrix[:3, 3], dtype=dtype)
    extents = np.asarray(boundsExtents, dtype=dtype)
    tmin = 0.0
    tmax = np.finfo(dtype).max
    d = boundsOffset - rayOrig
    # solve intersects for each pair of planes along each axis
    for i in range(3):
        axis = modelMatrix[:3, i]
        e = np.dot(axis, d)
        f = np.dot(rayDir, axis)
        if np.fabs(f) > 1e-5:
            t1 = (e + extents[0, i]) / f
            t2 = (e + extents[1, i]) / f
            if t1 > t2:
                temp = t1
                t1 = t2
                t2 = temp
            if t2 < tmax:
                tmax = t2
            if t1 > tmin:
                tmin = t1
            if tmin > tmax:
                return None
        else:
            # very close to parallel with the face
            if -e + extents[0, i] > 0.0 or -e + extents[1, i] < 0.0:
                return None
    return (rayDir * tmin) + rayOrig, tmin 
[docs]
def intersectRayTriangle(rayOrig, rayDir, tri, dtype=None):
    """Get the intersection of a ray and triangle(s).
    This function can be used to achieve 'pixel-perfect' ray picking/casting on
    meshes defined with triangles. However, high-poly meshes may lead to
    performance issues.
    Parameters
    ----------
    rayOrig : array_like
        Origin of the ray in space [x, y, z].
    rayDir : array_like
        Direction vector of the ray [x, y, z], should be normalized.
    tri : array_like
        Triangle vertices as 2D (3x3) array [p0, p1, p2] where each vertex is a
        length 3 array [vx, xy, vz]. The input array can be 3D (Nx3x3) to
        specify multiple triangles.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    tuple
        Coordinate in world space of the intersection, distance in scene
        units from `rayOrig`, and the barycentric coordinates on the triangle
        [x, y]. Returns `None` if there is no intersection.
    """
    # based off `intersectRayTriangle` from GLM (https://glm.g-truc.net)
    dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    rayOrig = np.asarray(rayOrig, dtype=dtype)
    rayDir = np.asarray(rayDir, dtype=dtype)
    triVerts = np.asarray(tri, dtype=dtype)
    edge1 = triVerts[1, :] - triVerts[0, :]
    edge2 = triVerts[2, :] - triVerts[0, :]
    baryPos = np.zeros((2,), dtype=dtype)
    p = np.cross(rayDir, edge2)
    det = np.dot(edge1, p)
    if det > np.finfo(dtype).eps:
        dist = rayOrig - triVerts[0, :]
        baryPos[0] = np.dot(dist, p)
        if baryPos[0] < 0.0 or baryPos[0] > det:
            return None
        ortho = np.cross(dist, edge1)
        baryPos[1] = np.dot(rayDir, ortho)
        if baryPos[1] < 0.0 or baryPos[0] + baryPos[1] > det:
            return None
    elif det < -np.finfo(dtype).eps:
        dist = rayOrig - triVerts[0, :]
        baryPos[0] = np.dot(dist, p)
        if baryPos[0] > 0.0 or baryPos[0] < det:
            return None
        ortho = np.cross(dist, edge1)
        baryPos[1] = np.dot(rayDir, ortho)
        if baryPos[1] > 0.0 or baryPos[0] + baryPos[1] < det:
            return None
    else:
        return None
    invDet = 1.0 / det
    dist = np.dot(edge2, ortho) * invDet
    baryPos *= invDet
    return (rayDir * dist) + rayOrig, dist, baryPos 
[docs]
def ortho3Dto2D(p, orig, normal, up, right=None, dtype=None):
    """Get the planar coordinates of an orthogonal projection of a 3D point onto
    a 2D plane.
    This function gets the nearest point on the plane which a 3D point falls on
    the plane.
    Parameters
    ----------
    p : array_like
        Point to be projected on the plane.
    orig : array_like
        Origin of the plane to test [x, y, z].
    normal : array_like
        Normal vector of the plane [x, y, z], must be normalized.
    up : array_like
        Normalized up (+Y) direction of the plane's coordinate system. Must be
        perpendicular to `normal`.
    right : array_like, optional
        Perpendicular right (+X) axis. If not provided, the axis will be
        computed via the cross product between `normal` and `up`.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Coordinates on the plane [X, Y] where the 3D point projects towards
        perpendicularly.
    Examples
    --------
    This function can be used with :func:`intersectRayPlane` to find the
    location on the plane the ray intersects::
        # plane information
        planeOrigin = [0, 0, 0]
        planeNormal = [0, 0, 1]  # must be normalized
        planeUpAxis = perp([0, 1, 0], planeNormal)  # must also be normalized
        # ray
        rayDir = [0, 0, -1]
        rayOrigin = [0, 0, 5]
        # get the intersect in 3D world space
        pnt = intersectRayPlane(rayOrigin, rayDir, planeOrigin, planeNormal)
        # get the 2D coordinates on the plane the intersect occurred
        planeX, planeY = ortho3Dto2D(pnt, planeOrigin, planeNormal, planeUpAxis)
    """
    dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    p = np.asarray(p, dtype=dtype)
    orig = np.asarray(orig, dtype=dtype)
    normal = np.asarray(normal, dtype=dtype)
    up = np.asarray(up, dtype=dtype)
    toReturn = np.zeros((2,))
    offset = p - orig
    if right is None:
        # derive X axis with cross product
        toReturn[0] = dot(offset, cross(normal, up, dtype=dtype), dtype=dtype)
    else:
        toReturn[0] = dot(offset, np.asarray(right, dtype=dtype), dtype=dtype)
    toReturn[1] = dot(offset, up)
    return toReturn 
[docs]
def articulate(boneVecs, boneOris, dtype=None):
    """Articulate an armature.
    This function is used for forward kinematics and posing by specifying a list
    of 'bones'. A bone has a length and orientation, where sequential bones are
    linked end-to-end. Returns the transformed origins of the bones in scene
    coordinates and their orientations.
    There are many applications for forward kinematics such as posing armatures
    and stimuli for display (eg. mocap data). Another application is for getting
    the location of the end effector of coordinate measuring hardware, where
    encoders measure the joint angles and the length of linking members are
    known. This can be used for computing pose from "Sword of Damocles"[1]_ like
    hardware or some other haptic input devices which the participant wears (eg.
    a glove that measures joint angles in the hand). The computed pose of the
    joints can be used to interact with virtual stimuli.
    Parameters
    ----------
    boneVecs : array_like
        Bone lengths [x, y, z] as an Nx3 array.
    boneOris : array_like
        Orientation of the bones as quaternions in form [x, y, z, w], relative
        to the previous bone.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    tuple
        Array of bone origins and orientations. The first origin is root
        position which is always at [0, 0, 0]. Use :func:`transform` to
        reposition the armature, or create a transformation matrix and use
        `applyMatrix` to translate and rotate the whole armature into position.
    References
    ----------
    .. [1] Sutherland, I. E. (1968). "A head-mounted three dimensional display".
           Proceedings of AFIPS 68, pp. 757-764
    Examples
    --------
    Compute the orientations and origins of segments of an arm::
        # bone lengths
        boneLengths = [[0., 1., 0.], [0., 1., 0.], [0., 1., 0.]]
        # create quaternions for joints
        shoulder = mt.quatFromAxisAngle('-y', 45.0)
        elbow = mt.quatFromAxisAngle('+z', 45.0)
        wrist = mt.quatFromAxisAngle('+z', 45.0)
        # articulate the parts of the arm
        boxPos, boxOri = mt.articulate(pos, [shoulder, elbow, wrist])
        # assign positions and orientations to 3D objects
        shoulderModel.thePose.posOri = (boxPos[0, :], boxOri[0, :])
        elbowModel.thePose.posOri = (boxPos[1, :], boxOri[1, :])
        wristModel.thePose.posOri = (boxPos[2, :], boxOri[2, :])
    """
    dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    boneVecs = np.asarray(boneVecs, dtype=dtype)
    boneOris = np.asarray(boneOris, dtype=dtype)
    jointOri = accumQuat(boneOris, dtype=dtype)  # get joint orientations
    bonesRotated = applyQuat(jointOri, boneVecs, dtype=dtype)  # rotate bones
    # accumulate
    bonesTranslated = np.asarray(
        tuple(itertools.accumulate(bonesRotated[:], lambda a, b: a + b)),
        dtype=dtype)
    bonesTranslated -= bonesTranslated[0, :]  # offset root length
    return bonesTranslated, jointOri 
# ------------------------------------------------------------------------------
# Quaternion Operations
#
[docs]
def slerp(q0, q1, t, shortest=True, out=None, dtype=None):
    """Spherical linear interpolation (SLERP) between two quaternions.
    The behaviour of this function depends on the types of arguments:
    * If `q0` and `q1` are both 1-D and `t` is scalar, the interpolation at `t`
      is returned.
    * If `q0` and `q1` are both 2-D Nx4 arrays and `t` is scalar, an Nx4 array
      is returned with each row containing the interpolation at `t` for each
      quaternion pair at matching row indices in `q0` and `q1`.
    Parameters
    ----------
    q0 : array_like
        Initial quaternion in form [x, y, z, w] where w is real and x, y, z
        are imaginary components.
    q1 : array_like
        Final quaternion in form [x, y, z, w] where w is real and x, y, z
        are imaginary components.
    t : float
        Interpolation weight factor within interval 0.0 and 1.0.
    shortest : bool, optional
        Ensure interpolation occurs along the shortest arc along the 4-D
        hypersphere (default is `True`).
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Quaternion [x, y, z, w] at `t`.
    Examples
    --------
    Interpolate between two orientations::
        q0 = quatFromAxisAngle(90.0, degrees=True)
        q1 = quatFromAxisAngle(-90.0, degrees=True)
        # halfway between 90 and -90 is 0.0 or quaternion [0. 0. 0. 1.]
        qr = slerp(q0, q1, 0.5)
    Example of smooth rotation of an object with fixed angular velocity::
        degPerSec = 10.0  # rotate a stimulus at 10 degrees per second
        # initial orientation, axis rotates in the Z direction
        qr = quatFromAxisAngle([0., 0., -1.], 0.0, degrees=True)
        # amount to rotate every second
        qv = quatFromAxisAngle([0., 0., -1.], degPerSec, degrees=True)
        # ---- within main experiment loop ----
        # `frameTime` is the time elapsed in seconds from last `slerp`.
        qr = multQuat(qr, slerp((0., 0., 0., 1.), qv, degPerSec * frameTime))
        _, angle = quatToAxisAngle(qr)  # discard axis, only need angle
        # myStim is a GratingStim or anything with an 'ori' argument which
        # accepts angle in degrees
        myStim.ori = angle
        myStim.draw()
    """
    # Implementation based on code found here:
    #  https://en.wikipedia.org/wiki/Slerp
    #
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    q0 = normalize(q0, dtype=dtype)
    q1 = normalize(q1, dtype=dtype)
    assert q0.shape == q1.shape
    toReturn = np.zeros(q0.shape, dtype=dtype) if out is None else out
    toReturn.fill(0.0)
    t = dtype(t)
    q0, q1, qr = np.atleast_2d(q0, q1, toReturn)
    d = np.clip(np.sum(q0 * q1, axis=1), -1.0, 1.0)
    if shortest:
        d[d < 0.0] *= -1.0
        q1[d < 0.0] *= -1.0
    theta0 = np.arccos(d)
    theta = theta0 * t
    sinTheta = np.sin(theta)
    s1 = sinTheta / np.sin(theta0)
    s0 = np.cos(theta[:, np.newaxis]) - d[:, np.newaxis] * s1[:, np.newaxis]
    qr[:, :] = q0 * s0
    qr[:, :] += q1 * s1[:, np.newaxis]
    qr[:, :] += 0.0
    return toReturn 
[docs]
def quatToAxisAngle(q, degrees=True, dtype=None):
    """Convert a quaternion to `axis` and `angle` representation.
    This allows you to use quaternions to set the orientation of stimuli that
    have an `ori` property.
    Parameters
    ----------
    q : tuple, list or ndarray of float
        Quaternion in form [x, y, z, w] where w is real and x, y, z
        are imaginary components.
    degrees : bool, optional
        Indicate `angle` is to be returned in degrees, otherwise `angle` will be
        returned in radians.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    tuple
        Axis and angle of quaternion in form ([ax, ay, az], angle). If `degrees`
        is `True`, the angle returned is in degrees, radians if `False`.
    Examples
    --------
    Using a quaternion to rotate a stimulus a fixed angle each frame::
        # initial orientation, axis rotates in the Z direction
        qr = quatFromAxisAngle([0., 0., -1.], 0.0, degrees=True)
        # rotation per-frame, here it's 0.1 degrees per frame
        qf = quatFromAxisAngle([0., 0., -1.], 0.1, degrees=True)
        # ---- within main experiment loop ----
        # myStim is a GratingStim or anything with an 'ori' argument which
        # accepts angle in degrees
        qr = multQuat(qr, qf)  # cumulative rotation
        _, angle = quatToAxisAngle(qr)  # discard axis, only need angle
        myStim.ori = angle
        myStim.draw()
    """
    dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    q = normalize(q, dtype=dtype)  # returns ndarray
    v = np.sqrt(np.sum(np.square(q[:3])))
    if np.count_nonzero(q[:3]):
        axis = q[:3] / v
        angle = dtype(2.0) * np.arctan2(v, q[3])
    else:
        axis = np.zeros((3,), dtype=dtype)
        axis[0] = 1.
        angle = 0.0
    axis += 0.0
    return axis, np.degrees(angle) if degrees else angle 
[docs]
def quatFromAxisAngle(axis, angle, degrees=True, dtype=None):
    """Create a quaternion to represent a rotation about `axis` vector by
    `angle`.
    Parameters
    ----------
    axis : tuple, list, ndarray or str
        Axis vector components or axis name. If a vector, input must be length
        3 [x, y, z]. A string can be specified for rotations about world axes
        (eg. `'+x'`, `'-z'`, `'+y'`, etc.)
    angle : float
        Rotation angle in radians (or degrees if `degrees` is `True`. Rotations
        are right-handed about the specified `axis`.
    degrees : bool, optional
        Indicate `angle` is in degrees, otherwise `angle` will be treated as
        radians.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Quaternion [x, y, z, w].
    Examples
    --------
    Create a quaternion from specified `axis` and `angle`::
        axis = [0., 0., -1.]  # rotate about -Z axis
        angle = 90.0  # angle in degrees
        ori = quatFromAxisAngle(axis, angle, degrees=True)  # using degrees!
    """
    dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    toReturn = np.zeros((4,), dtype=dtype)
    if degrees:
        halfRad = np.radians(angle, dtype=dtype) / dtype(2.0)
    else:
        halfRad = np.dtype(dtype).type(angle) / dtype(2.0)
    try:
        axis = VEC_AXES[axis] if isinstance(axis, str) else axis
    except KeyError:
        raise ValueError(
            "Value of `axis` must be either '+X', '-X', '+Y', '-Y', '+Z' or "
            "'-Z' or length 3 vector.")
    axis = normalize(axis, dtype=dtype)
    if np.count_nonzero(axis) == 0:
        raise ValueError("Value for `axis` is zero-length.")
    np.multiply(axis, np.sin(halfRad), out=toReturn[:3])
    toReturn[3] = np.cos(halfRad)
    toReturn += 0.0  # remove negative zeros
    return toReturn 
[docs]
def quatYawPitchRoll(q, degrees=True, out=None, dtype=None):
    """Get the yaw, pitch, and roll of a quaternion's orientation relative to
    the world -Z axis.
    You can multiply the quaternion by the inverse of some other one to make the
    returned values referenced to a local coordinate system.
    Parameters
    ----------
    q : tuple, list or ndarray of float
        Quaternion in form [x, y, z, w] where w is real and x, y, z
        are imaginary components.
    degrees : bool, optional
        Indicate angles are to be returned in degrees, otherwise they will be
        returned in radians.
    out : ndarray
        Optional output array. Must have same `shape` and `dtype` as what is
        expected to be returned by this function of `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Yaw, pitch and roll [yaw, pitch, roll] of quaternion `q`.
    """
    # based off code found here:
    # https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
    # Yields the same results as PsychXR's LibOVRPose.getYawPitchRoll method.
    dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    q = np.asarray(q, dtype=dtype)
    toReturn = np.zeros((3,), dtype=dtype) if out is None else out
    sinRcosP = 2.0 * (q[3] * q[0] + q[1] * q[2])
    cosRcosP = 1.0 - 2.0 * (q[0] * q[0] + q[1] * q[1])
    toReturn[0] = np.arctan2(sinRcosP, cosRcosP)
    sinp = 2.0 * (q[3] * q[1] - q[2] * q[0])
    if np.fabs(sinp) >= 1.:
        toReturn[1] = np.copysign(np.pi / 2., sinp)
    else:
        toReturn[1] = np.arcsin(sinp)
    sinYcosP = 2.0 * (q[3] * q[2] + q[0] * q[1])
    cosYcosP = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2])
    toReturn[2] = np.arctan2(sinYcosP, cosYcosP)
    if degrees:
        toReturn[:] = np.degrees(toReturn[:])
    return toReturn 
[docs]
def quatMagnitude(q, squared=False, out=None, dtype=None):
    """Get the magnitude of a quaternion.
    A quaternion is normalized if its magnitude is 1.
    Parameters
    ----------
    q : array_like
        Quaternion(s) in form [x, y, z, w] where w is real and x, y, z are
        imaginary components.
    squared : bool, optional
        If ``True`` return the squared magnitude. If you are just checking if a
        quaternion is normalized, the squared magnitude will suffice to avoid
        the square root operation.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    float or ndarray
        Magnitude of quaternion `q`.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    q = np.asarray(q, dtype=dtype)
    if q.ndim == 1:
        assert q.shape[0] == 4
        if squared:
            toReturn = np.sum(np.square(q))
        else:
            toReturn = np.sqrt(np.sum(np.square(q)))
    elif q.ndim == 2:
        assert q.shape[1] == 4
        toReturn = np.zeros((q.shape[0],), dtype=dtype) if out is None else out
        if squared:
            toReturn[:] = np.sum(np.square(q), axis=1)
        else:
            toReturn[:] = np.sqrt(np.sum(np.square(q), axis=1))
    else:
        raise ValueError("Input argument 'q' has incorrect dimensions.")
    return toReturn 
[docs]
def multQuat(q0, q1, out=None, dtype=None):
    """Multiply quaternion `q0` and `q1`.
    The orientation of the returned quaternion is the combination of the input
    quaternions.
    Parameters
    ----------
    q0, q1 : array_like
        Quaternions to multiply in form [x, y, z, w] where w is real and x, y, z
        are imaginary components. If 2D (Nx4) arrays are specified, quaternions
        are multiplied row-wise between each array.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Combined orientations of `q0` amd `q1`.
    Notes
    -----
    * Quaternions are normalized prior to multiplication.
    Examples
    --------
    Combine the orientations of two quaternions::
        a = quatFromAxisAngle([0, 0, -1], 45.0, degrees=True)
        b = quatFromAxisAngle([0, 0, -1], 90.0, degrees=True)
        c = multQuat(a, b)  # rotates 135 degrees about -Z axis
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    q0 = normalize(q0, dtype=dtype)
    q1 = normalize(q1, dtype=dtype)
    assert q0.shape == q1.shape
    toReturn = np.zeros(q0.shape, dtype=dtype) if out is None else out
    toReturn.fill(0.0)  # clear array
    q0, q1, qr = np.atleast_2d(q0, q1, toReturn)
    # multiply quaternions for each row of the operand arrays
    qr[:, :3] = np.cross(q0[:, :3], q1[:, :3], axis=1)
    qr[:, :3] += q0[:, :3] * np.expand_dims(q1[:, 3], axis=1)
    qr[:, :3] += q1[:, :3] * np.expand_dims(q0[:, 3], axis=1)
    qr[:, 3] = q0[:, 3]
    qr[:, 3] *= q1[:, 3]
    qr[:, 3] -= np.sum(np.multiply(q0[:, :3], q1[:, :3]), axis=1)  # dot product
    qr += 0.0
    return toReturn 
[docs]
def invertQuat(q, out=None, dtype=None):
    """Get the multiplicative inverse of a quaternion.
    This gives a quaternion which rotates in the opposite direction with equal
    magnitude. Multiplying a quaternion by its inverse returns an identity
    quaternion as both orientations cancel out.
    Parameters
    ----------
    q : ndarray, list, or tuple of float
        Quaternion to invert in form [x, y, z, w] where w is real and x, y, z
        are imaginary components. If `q` is 2D (Nx4), each row is treated as a
        separate quaternion and inverted.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Inverse of quaternion `q`.
    Examples
    --------
    Show that multiplying a quaternion by its inverse returns an identity
    quaternion where [x=0, y=0, z=0, w=1]::
        angle = 90.0
        axis = [0., 0., -1.]
        q = quatFromAxisAngle(axis, angle, degrees=True)
        qinv = invertQuat(q)
        qr = multQuat(q, qinv)
        qi = np.array([0., 0., 0., 1.])  # identity quaternion
        print(np.allclose(qi, qr))   # True
    Notes
    -----
    * Quaternions are normalized prior to inverting.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    q = normalize(q, dtype=dtype)
    toReturn = np.zeros(q.shape, dtype=dtype) if out is None else out
    qn, qinv = np.atleast_2d(q, toReturn)  # 2d views
    # conjugate the quaternion
    qinv[:, :3] = -qn[:, :3]
    qinv[:, 3] = qn[:, 3]
    qinv /= np.sum(np.square(qn), axis=1)[:, np.newaxis]
    qinv += 0.0  # remove negative zeros
    return toReturn 
[docs]
def applyQuat(q, points, out=None, dtype=None):
    """Rotate points/coordinates using a quaternion.
    This is similar to using `applyMatrix` with a rotation matrix. However, it
    is computationally less intensive to use `applyQuat` if one only wishes to
    rotate points.
    Parameters
    ----------
    q : array_like
        Quaternion to invert in form [x, y, z, w] where w is real and x, y, z
        are imaginary components.
    points : array_like
        2D array of vectors or points to transform, where each row is a single
        point. Only the x, y, and z components (the first three columns) are
        rotated. Additional columns are copied.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Transformed points.
    Examples
    --------
    Rotate points using a quaternion::
        points = [[1., 0., 0.], [0., -1., 0.]]
        quat = quatFromAxisAngle(-90.0, [0., 0., -1.], degrees=True)
        pointsRotated = applyQuat(quat, points)
        # [[0. 1. 0.]
        #  [1. 0. 0.]]
    Show that you get the same result as a rotation matrix::
        axis = [0., 0., -1.]
        angle = -90.0
        rotMat = rotationMatrix(axis, angle)[:3, :3]  # rotation sub-matrix only
        rotQuat = quatFromAxisAngle(angle, axis, degrees=True)
        points = [[1., 0., 0.], [0., -1., 0.]]
        isClose = np.allclose(applyMatrix(rotMat, points),  # True
                              applyQuat(rotQuat, points))
    Specifying an array to `q` where each row is a quaternion transforms points
    in corresponding rows of `points`::
        points = [[1., 0., 0.], [0., -1., 0.]]
        quats = [quatFromAxisAngle(-90.0, [0., 0., -1.], degrees=True),
                 quatFromAxisAngle(45.0, [0., 0., -1.], degrees=True)]
        applyQuat(quats, points)
    """
    # based on 'quat_mul_vec3' implementation from linmath.h
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    qin = np.asarray(q, dtype=dtype)
    points = np.asarray(points, dtype=dtype)
    if out is not None:
        assert points.shape == out.shape
    toReturn = np.zeros(points.shape, dtype=dtype) if out is None else out
    pin, pout = np.atleast_2d(points, toReturn)
    pout[:, :] = pin[:, :]  # copy values into output array
    if qin.ndim == 1:
        assert qin.shape[0] == 4
        t = cross(qin[:3], pin[:, :3]) * dtype(2.0)
        u = cross(qin[:3], t)
        t *= qin[3]
        pout[:, :3] += t
        pout[:, :3] += u
    elif qin.ndim == 2:
        assert qin.shape[1] == 4 and qin.shape[0] == pin.shape[0]
        t = cross(qin[:, :3], pin[:, :3])
        t *= dtype(2.0)
        u = cross(qin[:, :3], t)
        t *= np.expand_dims(qin[:, 3], axis=1)
        pout[:, :3] += t
        pout[:, :3] += u
    else:
        raise ValueError("Input arguments have invalid dimensions.")
    return toReturn 
[docs]
def accumQuat(qlist, out=None, dtype=None):
    """Accumulate quaternion rotations.
    Chain multiplies an Nx4 array of quaternions, accumulating their rotations.
    This function can be used for computing the orientation of joints in an
    armature for forward kinematics. The first quaternion is treated as the
    'root' and the last is the orientation of the end effector.
    Parameters
    ----------
    q : array_like
        Nx4 array of quaternions to accumulate, where each row is a quaternion.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified. In this case, the same shape as
        `qlist`.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Nx4 array of quaternions.
    Examples
    --------
    Get the orientation of joints in an armature if we know their relative
    angles::
        shoulder = quatFromAxisAngle('-x', 45.0)  # rotate shoulder down 45 deg
        elbow = quatFromAxisAngle('+x', 45.0)  # rotate elbow up 45 deg
        wrist = quatFromAxisAngle('-x', 45.0)  # rotate wrist down 45 deg
        finger = quatFromAxisAngle('+x', 0.0)  # keep finger in-line with wrist
        armRotations = accumQuat([shoulder, elbow, wrist, finger])
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    qlist = np.asarray(qlist, dtype=dtype)
    qlist = np.atleast_2d(qlist)
    qr = np.zeros_like(qlist, dtype=dtype) if out is None else out
    qr[:, :] = tuple(itertools.accumulate(
        qlist[:], lambda a, b: multQuat(a, b, dtype=dtype)))
    return qr 
[docs]
def alignTo(v, t, out=None, dtype=None):
    """Compute a quaternion which rotates one vector to align with another.
    Parameters
    ----------
    v : array_like
        Vector [x, y, z] to rotate. Can be Nx3, but must have the same shape as
        `t`.
    t : array_like
        Target [x, y, z] vector to align to. Can be Nx3, but must have the same
        shape as `v`.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Quaternion which rotates `v` to `t`.
    Examples
    --------
    Rotate some vectors to align with other vectors, inputs should be
    normalized::
        vec = [[1, 0, 0], [0, 1, 0], [1, 0, 0]]
        targets = [[0, 1, 0], [0, -1, 0], [-1, 0, 0]]
        qr = alignTo(vec, targets)
        vecRotated = applyQuat(qr, vec)
        numpy.allclose(vecRotated, targets)  # True
    Get matrix which orients vertices towards a point::
        point = [5, 6, 7]
        vec = [0, 0, -1]  # initial facing is -Z (forward in GL)
        targetVec = normalize(point - vec)
        qr = alignTo(vec, targetVec)  # get rotation to align
        M = quatToMatrix(qr)  # 4x4 transformation matrix
    """
    # based off Quaternion::align from Quaternion.hpp from OpenMP
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    v = normalize(v, dtype=dtype)
    t = normalize(t, dtype=dtype)
    if out is None:
        if v.ndim == 1:
            toReturn = np.zeros((4,), dtype=dtype)
        else:
            toReturn = np.zeros((v.shape[0], 4), dtype=dtype)
    else:
        toReturn = out
    qr, v2d, t2d = np.atleast_2d(toReturn, v, t)
    b = bisector(v2d, t2d, norm=True, dtype=dtype)
    cosHalfAngle = dot(v2d, b, dtype=dtype)
    nonparallel = cosHalfAngle > 0.0  # rotation is not 180 degrees
    qr[nonparallel, :3] = cross(v2d[nonparallel], b[nonparallel], dtype=dtype)
    qr[nonparallel, 3] = cosHalfAngle[nonparallel]
    if np.all(nonparallel):  # don't bother handling special cases
        return toReturn + 0.0
    # deal with cases where the vectors are facing exact opposite directions
    ry = np.logical_and(np.abs(v2d[:, 0]) >= np.abs(v2d[:, 1]), ~nonparallel)
    rx = np.logical_and(~ry, ~nonparallel)
    getLength = lambda x, y: np.sqrt(x * x + y * y)
    if not np.all(rx):
        invLength = getLength(v2d[ry, 0], v2d[ry, 2])
        invLength = np.where(invLength > 0.0, 1.0 / invLength, invLength)  # avoid x / 0
        qr[ry, 0] = -v2d[ry, 2] * invLength
        qr[ry, 2] = v2d[ry, 0] * invLength
    if not np.all(ry):  # skip if all the same edge case
        invLength = getLength(v2d[rx, 1], v2d[rx, 2])
        invLength = np.where(invLength > 0.0, 1.0 / invLength, invLength)
        qr[rx, 1] = v2d[rx, 2] * invLength
        qr[rx, 2] = -v2d[rx, 1] * invLength
    return toReturn + 0.0 
[docs]
def matrixToQuat(m, out=None, dtype=None):
    """Convert a rotation matrix to a quaternion.
    Parameters
    ----------
    m : array_like
        3x3 rotation matrix (row-major). A 4x4 affine transformation matrix may
        be provided, assuming the top-left 3x3 sub-matrix is orthonormal and
        is a rotation group.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Rotation quaternion.
    Notes
    -----
    * Depending on the input, returned quaternions may not be exactly the same
      as the one used to construct the rotation matrix (i.e. by calling
      `quatToMatrix`), typically when a large rotation angle is used. However,
      the returned quaternion should result in the same rotation when applied to
      points.
    Examples
    --------
    Converting a rotation matrix from the OpenGL matrix stack to a quaternion::
        glRotatef(45., -1, 0, 0)
        m = np.zeros((4, 4), dtype='float32')  # store the matrix
        GL.glGetFloatv(
            GL.GL_MODELVIEW_MATRIX,
            m.ctypes.data_as(ctypes.POINTER(ctypes.c_float)))
        qr = matrixToQuat(m.T)  # must be transposed
    Interpolation between two 4x4 transformation matrices::
        interpWeight = 0.5
        posStart = mStart[:3, 3]
        oriStart = matrixToQuat(mStart)
        posEnd = mEnd[:3, 3]
        oriEnd = matrixToQuat(mEnd)
        oriInterp = slerp(qStart, qEnd, interpWeight)
        posInterp = lerp(posStart, posEnd, interpWeight)
        mInterp = posOriToMatrix(posInterp, oriInterp)
    """
    # based off example `Maths - Conversion Matrix to Quaternion` from
    # https://www.euclideanspace.com/
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    m = np.asarray(m, dtype=dtype)
    if m.shape == (4, 4,) or m.shape == (3, 4,):
        m = m[:3, :3]  # keep only rotation group sub-matrix
    elif m.shape == (3, 3,):
        pass  # fine, nop
    else:
        raise ValueError("Input matrix `m` must be 3x3 or 4x4.")
    toReturn = np.zeros((4,), dtype=dtype) if out is None else out
    tr = m[0, 0] + m[1, 1] + m[2, 2]
    if tr > 0.0:
        s = np.sqrt(tr + 1.0) * 2.0
        toReturn[3] = dtype(0.25) * s
        toReturn[0] = (m[2, 1] - m[1, 2]) / s
        toReturn[1] = (m[0, 2] - m[2, 0]) / s
        toReturn[2] = (m[1, 0] - m[0, 1]) / s
    elif m[0, 0] > m[1, 1] and m[0, 0] > m[2, 2]:
        s = np.sqrt(dtype(1.0) + m[0, 0] - m[1, 1] - m[2, 2]) * dtype(2.0)
        toReturn[3] = (m[2, 1] - m[1, 2]) / s
        toReturn[0] = dtype(0.25) * s
        toReturn[1] = (m[0, 1] + m[1, 0]) / s
        toReturn[2] = (m[0, 2] + m[2, 0]) / s
    elif m[1, 1] > m[2, 2]:
        s = np.sqrt(dtype(1.0) + m[1, 1] - m[0, 0] - m[2, 2]) * dtype(2.0)
        toReturn[3] = (m[0, 2] - m[2, 0]) / s
        toReturn[0] = (m[0, 1] + m[1, 0]) / s
        toReturn[1] = dtype(0.25) * s
        toReturn[2] = (m[1, 2] + m[2, 1]) / s
    else:
        s = np.sqrt(dtype(1.0) + m[2, 2] - m[0, 0] - m[1, 1]) * dtype(2.0)
        toReturn[3] = (m[1, 0] - m[0, 1]) / s
        toReturn[0] = (m[0, 2] + m[2, 0]) / s
        toReturn[1] = (m[1, 2] + m[2, 1]) / s
        toReturn[2] = dtype(0.25) * s
    return toReturn 
# ------------------------------------------------------------------------------
# Matrix Operations
#
def identityMatrix(size=4, out=None, dtype=None):
    """Create an sqaure identity matrix.
    Parameters
    ----------
    size : int, optional
        Size of the matrix. Default is `4` for a 4x4 identity matrix.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Identity matrix.
    """
    # this might seem overkill for creating an identity matrix, but it is
    # necessary to ensure the correct data type is used
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
        ident = np.zeros((size, size), dtype=dtype)
    else:
        dtype = np.dtype(out.dtype).type
        ident = out
        ident.fill(0.0)
    np.fill_diagonal(ident, 1.0)
    return ident
    
[docs]
def quatToMatrix(q, out=None, dtype=None):
    """Create a 4x4 rotation matrix from a quaternion.
    Parameters
    ----------
    q : tuple, list or ndarray of float
        Quaternion to convert in form [x, y, z, w] where w is real and x, y, z
        are imaginary components.
    out : ndarray or None
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray or None
        4x4 rotation matrix in row-major order.
    Examples
    --------
    Convert a quaternion to a rotation matrix::
        point = [0., 1., 0., 1.]  # 4-vector form [x, y, z, 1.0]
        ori = [0., 0., 0., 1.]
        rotMat = quatToMatrix(ori)
        # rotate 'point' using matrix multiplication
        newPoint = np.matmul(rotMat.T, point)  # returns [-1., 0., 0., 1.]
    Rotate all points in an array (each row is a coordinate)::
        points = np.asarray([[0., 0., 0., 1.],
                             [0., 1., 0., 1.],
                             [1., 1., 0., 1.]])
        newPoints = points.dot(rotMat)
    Notes
    -----
    * Quaternions are normalized prior to conversion.
    """
    # based off implementations from
    # https://github.com/glfw/glfw/blob/master/deps/linmath.h
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
        R = np.zeros((4, 4,), dtype=dtype)
    else:
        dtype = np.dtype(out.dtype).type
        R = out
        R.fill(0.0)
    q = normalize(q, dtype=dtype)
    b, c, d, a = q[:]
    vsqr = np.square(q)
    u = dtype(2.0)
    R[0, 0] = vsqr[3] + vsqr[0] - vsqr[1] - vsqr[2]
    R[1, 0] = u * (b * c + a * d)
    R[2, 0] = u * (b * d - a * c)
    R[0, 1] = u * (b * c - a * d)
    R[1, 1] = vsqr[3] - vsqr[0] + vsqr[1] - vsqr[2]
    R[2, 1] = u * (c * d + a * b)
    R[0, 2] = u * (b * d + a * c)
    R[1, 2] = u * (c * d - a * b)
    R[2, 2] = vsqr[3] - vsqr[0] - vsqr[1] + vsqr[2]
    R[3, 3] = dtype(1.0)
    R[:, :] += 0.0  # remove negative zeros
    return R 
[docs]
def scaleMatrix(s, out=None, dtype=None):
    """Create a scaling matrix.
    The resulting matrix is the same as a generated by a `glScale` call.
    Parameters
    ----------
    s : array_like, float or int
        Scaling factor(s). If `s` is scalar (float), scaling will be uniform.
        Providing a vector of scaling values [sx, sy, sz] will result in an
        anisotropic scaling matrix if any of the values differ.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        4x4 scaling matrix in row-major order.
    """
    # from glScale
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
        S = np.zeros((4, 4,), dtype=dtype)
    else:
        dtype = np.dtype(out.dtype).type
        S = out
        S.fill(0.0)
    if isinstance(s, (float, int,)):
        S[0, 0] = S[1, 1] = S[2, 2] = dtype(s)
    else:
        S[0, 0] = dtype(s[0])
        S[1, 1] = dtype(s[1])
        S[2, 2] = dtype(s[2])
    S[3, 3] = 1.0
    return S 
[docs]
def rotationMatrix(angle, axis=(0., 0., -1.), out=None, dtype=None):
    """Create a rotation matrix.
    The resulting matrix will rotate points about `axis` by `angle`. The
    resulting matrix is similar to that produced by a `glRotate` call.
    Parameters
    ----------
    angle : float
        Rotation angle in degrees.
    axis : array_like or str
        Axis vector components or axis name. If a vector, input must be length
        3. A string can be specified for rotations about world axes (eg. `'+x'`,
        `'-z'`, `'+y'`, etc.)
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        4x4 scaling matrix in row-major order. Will be the same array as `out`
        if specified, if not, a new array will be allocated.
    Notes
    -----
    * Vector `axis` is normalized before creating the matrix.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
        R = np.zeros((4, 4,), dtype=dtype)
    else:
        dtype = np.dtype(out.dtype).type
        R = out
        R.fill(0.0)
    try:
        axis = VEC_AXES[axis] if isinstance(axis, str) else axis
    except KeyError:
        raise ValueError(
            "Value of `axis` must be either '+x', '-x', '+y', '-x', '+z' or "
            "'-z' or length 3 vector.")
    axis = normalize(axis, dtype=dtype)
    if np.count_nonzero(axis) == 0:
        raise ValueError("Value for `axis` is zero-length.")
    angle = np.radians(angle, dtype=dtype)
    c = np.cos(angle, dtype=dtype)
    s = np.sin(angle, dtype=dtype)
    xs, ys, zs = axis * s
    x2, y2, z2 = np.square(axis)  # type inferred by input
    x, y, z = axis
    cd = dtype(1.0) - c
    R[0, 0] = x2 * cd + c
    R[0, 1] = x * y * cd - zs
    R[0, 2] = x * z * cd + ys
    R[1, 0] = y * x * cd + zs
    R[1, 1] = y2 * cd + c
    R[1, 2] = y * z * cd - xs
    R[2, 0] = x * z * cd - ys
    R[2, 1] = y * z * cd + xs
    R[2, 2] = z2 * cd + c
    R[3, 3] = dtype(1.0)
    R[:, :] += 0.0  # remove negative zeros
    return R 
[docs]
def translationMatrix(t, out=None, dtype=None):
    """Create a translation matrix.
    The resulting matrix is the same as generated by a `glTranslate` call.
    Parameters
    ----------
    t : ndarray, tuple, or list of float
        Translation vector [tx, ty, tz].
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        4x4 translation matrix in row-major order. Will be the same array as
        `out` if specified, if not, a new array will be allocated.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
        T = np.identity(4, dtype=dtype)
    else:
        dtype = np.dtype(out.dtype).type
        T = out
        T.fill(0.0)
        np.fill_diagonal(T, 1.0)
    T[:3, 3] = np.asarray(t, dtype=dtype)
    return T 
[docs]
def invertMatrix(m, out=None, dtype=None):
    """Invert a square matrix.
    Parameters
    ----------
    m : array_like
        Square matrix to invert. Inputs can be 4x4, 3x3 or 2x2.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Matrix which is the inverse of `m`
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = out.dtype
    m = np.asarray(m, dtype=dtype)  # input as array
    toReturn = np.empty_like(m, dtype=dtype) if out is None else out
    toReturn.fill(0.0)
    if m.shape == (4, 4,):
        # Special handling of 4x4 matrices, if affine and orthogonal
        # (homogeneous), simply transpose the matrix rather than doing a full
        # invert.
        if isOrthogonal(m[:3, :3]) and isAffine(m):
            rg = m[:3, :3]
            toReturn[:3, :3] = rg.T
            toReturn[:3, 3] = -m[:3, 3].dot(rg)
            #toReturn[0, 3] = \
            #    -(m[0, 0] * m[0, 3] + m[1, 0] * m[1, 3] + m[2, 0] * m[2, 3])
            #toReturn[1, 3] = \
            #    -(m[0, 1] * m[0, 3] + m[1, 1] * m[1, 3] + m[2, 1] * m[2, 3])
            #toReturn[2, 3] = \
            #    -(m[0, 2] * m[0, 3] + m[1, 2] * m[1, 3] + m[2, 2] * m[2, 3])
            toReturn[3, 3] = 1.0
        else:
            toReturn[:, :] = np.linalg.inv(m)
    elif m.shape[0] == m.shape[1]:  # square, other than 4x4
        toReturn[:, :] = np.linalg.inv(m) if not isOrthogonal(m) else m.T
    else:
        toReturn[:, :] = np.linalg.inv(m)
    return toReturn 
[docs]
def multMatrix(matrices, reverse=False, out=None, dtype=None):
    """Chain multiplication of two or more matrices.
    Multiply a sequence of matrices together, reducing to a single product
    matrix. For instance, specifying `matrices` the sequence of matrices (A, B,
    C, D) will return the product (((AB)C)D). If `reverse=True`, the product
    will be (A(B(CD))).
    Alternatively, a 3D array can be specified to `matrices` as a stack, where
    an index along axis 0 references a 2D slice storing matrix values. The
    product of the matrices along the axis will be returned. This is a bit more
    efficient than specifying separate matrices in a sequence, but the
    difference is negligible when only a few matrices are being multiplied.
    Parameters
    ----------
    matrices : list, tuple or ndarray
        Sequence or stack of matrices to multiply. All matrices must have the
        same dimensions.
    reverse : bool, optional
        Multiply matrices right-to-left. This is useful when dealing with
        transformation matrices, where the order of operations for transforms
        will appear the same as the order the matrices are specified. Default is
        'False'. When `True`, this function behaves similarly to
        :func:`concatenate`.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Matrix product.
    Notes
    -----
    * You may use `numpy.matmul` when dealing with only two matrices instead of
      `multMatrix`.
    * If a single matrix is specified, the returned product will have the same
      values.
    Examples
    --------
    Chain multiplication of SRT matrices::
        translate = translationMatrix((0.035, 0, -0.5))
        rotate = rotationMatrix(90.0, (0, 1, 0))
        scale = scaleMatrix(2.0)
        SRT = multMatrix((translate, rotate, scale))
    Same as above, but matrices are in a 3x4x4 array::
        matStack = np.array((translate, rotate, scale))
        # or ...
        # matStack = np.zeros((3, 4, 4))
        # matStack[0, :, :] = translate
        # matStack[1, :, :] = rotate
        # matStack[2, :, :] = scale
        SRT = multMatrix(matStack)
    Using `reverse=True` allows you to specify transformation matrices in the
    order which they will be applied::
        SRT = multMatrix(np.array((scale, rotate, translate)), reverse=True)
    """
    # convert matrix types
    dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    matrices = np.asarray(matrices, dtype=dtype)  # convert to array
    matrices = np.atleast_3d(matrices)
    prod = functools.reduce(
        np.matmul, matrices[:] if not reverse else matrices[::-1])
    if out is not None:
        toReturn = out
        toReturn[:, :] = prod
    else:
        toReturn = prod
    return toReturn 
[docs]
def concatenate(matrices, out=None, dtype=None):
    """Concatenate matrix transformations.
    Chain multiply matrices describing transform operations into a single matrix
    product, that when applied, transforms points and vectors with each
    operation in the order they're specified.
    Parameters
    ----------
    matrices : list or tuple
        List of matrices to concatenate. All matrices must all have the same
        size, usually 4x4 or 3x3.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Matrix product.
    See Also
    --------
    * multMatrix : Chain multiplication of matrices.
    Notes
    -----
    * This function should only be used for combining transformation matrices.
      Use `multMatrix` for general matrix chain multiplication.
    Examples
    --------
    Create an SRT (scale, rotate, and translate) matrix to convert model-space
    coordinates to world-space::
        S = scaleMatrix([2.0, 2.0, 2.0])  # scale model 2x
        R = rotationMatrix(-90., [0., 0., -1])  # rotate -90 about -Z axis
        T = translationMatrix([0., 0., -5.])  # translate point 5 units away
        # product matrix when applied to points will scale, rotate and transform
        # in that order.
        SRT = concatenate([S, R, T])
        # transform a point in model-space coordinates to world-space
        pointModel = np.array([0., 1., 0., 1.])
        pointWorld = np.matmul(SRT, pointModel.T)  # point in WCS
        # ... or ...
        pointWorld = matrixApply(SRT, pointModel)
    Create a model-view matrix from a world-space pose represented by an
    orientation (quaternion) and position (vector). The resulting matrix will
    transform model-space coordinates to eye-space::
        # eye pose as quaternion and vector
        stimOri = quatFromAxisAngle([0., 0., -1.], -45.0)
        stimPos = [0., 1.5, -5.]
        # create model matrix
        R = quatToMatrix(stimOri)
        T = translationMatrix(stimPos)
        M = concatenate(R, T)  # model matrix
        # create a view matrix, can also be represented as 'pos' and 'ori'
        eyePos = [0., 1.5, 0.]
        eyeFwd = [0., 0., -1.]
        eyeUp = [0., 1., 0.]
        V = lookAt(eyePos, eyeFwd, eyeUp)  # from viewtools
        # modelview matrix
        MV = concatenate([M, V])
    You can put the created matrix in the OpenGL matrix stack as shown below.
    Note that the matrix must have a 32-bit floating-point data type and needs
    to be loaded transposed since OpenGL takes matrices in column-major order::
        GL.glMatrixMode(GL.GL_MODELVIEW)
        # pyglet
        MV = np.asarray(MV, dtype='float32')  # must be 32-bit float!
        ptrMV = MV.ctypes.data_as(ctypes.POINTER(ctypes.c_float))
        GL.glLoadTransposeMatrixf(ptrMV)
        # PyOpenGL
        MV = np.asarray(MV, dtype='float32')
        GL.glLoadTransposeMatrixf(MV)
    Furthermore, you can convert a point from model-space to homogeneous
    clip-space by concatenating the projection, view, and model matrices::
        # compute projection matrix, functions here are from 'viewtools'
        screenWidth = 0.52
        screenAspect = w / h
        scrDistance = 0.55
        frustum = computeFrustum(screenWidth, screenAspect, scrDistance)
        P = perspectiveProjectionMatrix(*frustum)
        # multiply model-space points by MVP to convert them to clip-space
        MVP = concatenate([M, V, P])
        pointModel = np.array([0., 1., 0., 1.])
        pointClipSpace = np.matmul(MVP, pointModel.T)
    """
    return multMatrix(matrices, reverse=True, out=out, dtype=dtype) 
[docs]
def matrixFromEulerAngles(rx, ry, rz, degrees=True, out=None, dtype=None):
    """Construct a 4x4 rotation matrix from Euler angles.
    Rotations are combined by first rotating about the X axis, then Y, and
    finally Z.
    Parameters
    ----------
    rx, ry, rz : float
        Rotation angles (pitch, yaw, and roll).
    degrees : bool, optional
        Rotation angles are specified in degrees. If `False`, they will be
        assumed as radians. Default is `True`.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        4x4 rotation matrix.
    Examples
    --------
    Demonstration of how a combination of axis-angle rotations is equivalent
    to a single call of `matrixFromEulerAngles`::
        m1 = matrixFromEulerAngles(90., 45., 135.))
        # construct rotation matrix from 3 orthogonal rotations
        rx = rotationMatrix(90., (1, 0, 0))  # x-axis
        ry = rotationMatrix(45., (0, 1, 0))  # y-axis
        rz = rotationMatrix(135., (0, 0, 1))  # z-axis
        m2 = concatenate([rz, ry, rx])  # note the order
        print(numpy.allclose(m1, m2))  # True
    Not only does `matrixFromEulerAngles` require less code, it also is
    considerably more efficient than constructing and multiplying multiple
    matrices.
    """
    # from https://www.j3d.org/matrix_faq/matrfaq_latest.html
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
        toReturn = np.zeros((4, 4,), dtype=dtype)
    else:
        dtype = np.dtype(dtype).type
        toReturn = out
        toReturn.fill(0.0)
    angles = np.asarray([rx, ry, rz], dtype=dtype)
    if degrees:
        angles = np.radians(angles)
    a, c, e = np.cos(angles)
    b, d, f = np.sin(angles)
    ad = a * d
    bd = b * d
    toReturn[0, 0] = c * e
    toReturn[0, 1] = -c * f
    toReturn[0, 2] = d
    toReturn[1, 0] = bd * e + a * f
    toReturn[1, 1] = -bd * f + a * e
    toReturn[1, 2] = -b * c
    toReturn[2, 0] = -ad * e + b * f
    toReturn[2, 1] = ad * f + b * e
    toReturn[2, 2] = a * c
    toReturn[3, 3] = 1.0
    return toReturn 
[docs]
def isOrthogonal(m):
    """Check if a square matrix is orthogonal.
    If a matrix is orthogonal, its columns form an orthonormal basis and is
    non-singular. An orthogonal matrix is invertible by simply taking the
    transpose of the matrix.
    Parameters
    ----------
    m : array_like
        Square matrix, either 2x2, 3x3 or 4x4.
    Returns
    -------
    bool
        `True` if the matrix is orthogonal.
    """
    if not isinstance(m, (np.ndarray,)):
        m = np.asarray(m)
    assert 2 <= m.shape[0] <= 4   # 2x2 to 4x4
    assert m.shape[0] == m.shape[1]  # must be square
    dtype = np.dtype(m.dtype).type
    return np.allclose(np.matmul(m.T, m, dtype=dtype),
                       np.identity(m.shape[0], dtype)) 
[docs]
def isAffine(m):
    """Check if a 4x4 square matrix describes an affine transformation.
    Parameters
    ----------
    m : array_like
        4x4 transformation matrix.
    Returns
    -------
    bool
        `True` if the matrix is affine.
    """
    assert m.shape[0] == m.shape[1] == 4
    if not isinstance(m, (np.ndarray,)):
        m = np.asarray(m)
    dtype = np.dtype(m.dtype).type
    eps = np.finfo(dtype).eps
    return np.all(m[3, :3] < eps) and (dtype(1.0) - m[3, 3]) < eps 
[docs]
def applyMatrix(m, points, out=None, dtype=None):
    """Apply a matrix over a 2D array of points.
    This function behaves similarly to the following `Numpy` statement::
        points[:, :] = points.dot(m.T)
    Transformation matrices specified to `m` must have dimensions 4x4, 3x4, 3x3
    or 2x2. With the exception of 4x4 matrices, input `points` must have the
    same number of columns as the matrix has rows. 4x4 matrices can be used to
    transform both Nx4 and Nx3 arrays.
    Parameters
    ----------
    m : array_like
        Matrix with dimensions 2x2, 3x3, 3x4 or 4x4.
    points : array_like
        2D array of points/coordinates to transform. Each row should have length
        appropriate for the matrix being used. If not, a square submatrix will 
        be taken from the input matrix with dimensions equal to the number of 
        columns in `points`.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Transformed coordinates.
    Notes
    -----
    * Input (`points`) and output (`out`) arrays cannot be the same instance for
      this function.
    * In the case of 4x4 input matrices, this function performs optimizations
      based on whether the input matrix is affine, greatly improving performance
      when working with Nx3 arrays.
    Examples
    --------
    Construct a matrix and transform a point::
        # identity 3x3 matrix for this example
        M = [[1.0, 0.0, 0.0],
             [0.0, 1.0, 0.0],
             [0.0, 0.0, 1.0]]
        pnt = [1.0, 0.0, 0.0]
        pntNew = applyMatrix(M, pnt)
    Construct an SRT matrix (scale, rotate, transform) and transform an array of
    points::
        S = scaleMatrix([5.0, 5.0, 5.0])  # scale 5x
        R = rotationMatrix(180., [0., 0., -1])  # rotate 180 degrees
        T = translationMatrix([0., 1.5, -3.])  # translate point up and away
        M = concatenate([S, R, T])  # create transform matrix
        # points to transform
        points = np.array([[0., 1., 0., 1.], [-1., 0., 0., 1.]]) # [x, y, z, w]
        newPoints = applyMatrix(M, points)  # apply the transformation
    Convert CIE-XYZ colors to sRGB::
        sRGBMatrix = [[3.2404542, -1.5371385, -0.4985314],
                      [-0.969266,  1.8760108,  0.041556 ],
                      [0.0556434, -0.2040259,  1.0572252]]
        colorsRGB = applyMatrix(sRGBMatrix, colorsXYZ)
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    m = np.asarray(m, dtype=dtype)
    points = np.asarray(points, dtype=dtype)
    if out is None:
        toReturn = np.zeros_like(points, dtype=dtype)
    else:
        if id(out) == id(points):
            raise ValueError('Output array cannot be same as input.')
        toReturn = out
    pout, p = np.atleast_2d(toReturn, points)
    nCols = p.shape[1]
    if m.shape[0] > nCols:
        if m.shape[1] < nCols:
            raise ValueError(
                'Input matrix dimensions are not compatible with input array.')
        m = m[:nCols, :nCols]  # take sub matrix
    if m.shape == (4, 4):  # 4x4 matrix
        if pout.shape[1] == 3:  # Nx3
            pout[:, :] = p.dot(m[:3, :3].T)
            pout += m[:3, 3]
            # find `rcpW` as suggested in OpenXR's xr_linear.h header
            # reciprocal of `w` if the matrix is not orthonormal
            if not isAffine(m):
                rcpW = 1.0 / (m[3, 0] * p[:, 0] +
                              m[3, 1] * p[:, 1] +
                              m[3, 2] * p[:, 2] +
                              m[3, 3])
                pout *= rcpW[:, np.newaxis]
        elif pout.shape[1] == 4:  # Nx4
            pout[:, :] = p.dot(m.T)
        else:
            raise ValueError(
                'Input array dimensions invalid. Should be Nx3 or Nx4 when '
                'input matrix is 4x4.')
    elif m.shape == (3, 4):  # 3x4 matrix
        if pout.shape[1] == 3:  # Nx3
            pout[:, :] = p.dot(m[:3, :3].T)
            pout += m[:3, 3]
        else:
            raise ValueError(
                'Input array dimensions invalid. Should be Nx3 when input '
                'matrix is 3x4.')
    elif m.shape == (3, 3):  # 3x3 matrix, e.g colors
        if pout.shape[1] == 3:  # Nx3
            pout[:, :] = p.dot(m.T)
        else:
            raise ValueError(
                'Input array dimensions invalid. Should be Nx3 when '
                'input matrix is 3x3.')
    elif m.shape == (2, 2):  # 2x2 matrix
        if pout.shape[1] == 2:  # Nx2
            pout[:, :] = p.dot(m.T)
        else:
            raise ValueError(
                'Input array dimensions invalid. Should be Nx2 when '
                'input matrix is 2x2.')
    else:
        raise ValueError(
            'Only a square matrix with dimensions 2, 3 or 4 can be used.')
    return toReturn 
[docs]
def posOriToMatrix(pos, ori, out=None, dtype=None):
    """Convert a rigid body pose to a 4x4 transformation matrix.
    A pose is represented by a position coordinate `pos` and orientation
    quaternion `ori`.
    Parameters
    ----------
    pos : ndarray, tuple, or list of float
        Position vector [x, y, z].
    ori : tuple, list or ndarray of float
        Orientation quaternion in form [x, y, z, w] where w is real and x, y, z
        are imaginary components.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        4x4 transformation matrix.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
        toReturn = np.zeros((4, 4,), dtype=dtype)
    else:
        dtype = np.dtype(dtype).type
        toReturn = out
    transMat = translationMatrix(pos, dtype=dtype)
    rotMat = quatToMatrix(ori, dtype=dtype)
    return np.matmul(transMat, rotMat, out=toReturn) 
[docs]
def scale(sf, points, out=None, dtype=None):
    """Scale points by a factor.
    This is useful for converting points between units, and to stretch or
    compress points along a given axis. Scaling can be uniform which the same
    factor is applied along all axes, or anisotropic along specific axes.
    Parameters
    ----------
    sf : array_like or float
        Scaling factor. If scalar, all points will be scaled uniformly by that
        factor. If a vector, scaling will be anisotropic along an axis.
    points : array_like
        Point(s) [x, y, z] to scale.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Scaled points.
    Examples
    --------
    Apply uniform scaling to points, here we scale to convert points in
    centimeters to meters::
        CM_TO_METERS = 1.0 / 100.0
        pointsCM = [[1, 2, 3], [4, 5, 6], [-1, 1, 0]]
        pointsM = scale(CM_TO_METERS, pointsCM)
    Anisotropic scaling along the X and Y axis::
        pointsM = scale((SCALE_FACTOR_X, SCALE_FACTOR_Y), pointsCM)
    Scale only on the X axis::
        pointsM = scale((SCALE_FACTOR_X,), pointsCM)
    Apply scaling on the Z axis only::
        pointsM = scale((1.0, 1.0, SCALE_FACTOR_Z), pointsCM)
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(dtype).type
    points = np.asarray(points, dtype=dtype)
    toReturn = np.zeros_like(points, dtype=dtype) if out is None else out
    toReturn, points = np.atleast_2d(toReturn, points)  # create 2d views
    # uniform scaling
    if isinstance(sf, (float, int)):
        toReturn[:, :] = points * sf
    elif isinstance(sf, (list, tuple, np.ndarray)):  # anisotropic
        sf = np.asarray(sf, dtype=dtype)
        sfLen = len(sf)
        if sfLen <= 3:
            toReturn[:, :] = points
            toReturn[:, :len(sf)] *= sf
        else:
            raise ValueError("Scale factor array must have length <= 3.")
    return toReturn 
[docs]
def normalMatrix(modelMatrix, out=None, dtype=None):
    """Get the normal matrix from a model matrix.
    Parameters
    ----------
    modelMatrix : array_like
        4x4 homogeneous model matrix.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Normal matrix.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(dtype).type
    modelMatrix = np.asarray(modelMatrix, dtype=dtype)
    toReturn = np.zeros((4, 4), dtype=dtype) if out is None else out
    toReturn[:, :] = np.linalg.inv(modelMatrix).T
    return toReturn 
[docs]
def forwardProject(objPos, modelView, proj, viewport=None, out=None, dtype=None):
    """Project a point in a scene to a window coordinate.
    This function is similar to `gluProject` and can be used to find the window
    coordinate which a point projects to.
    Parameters
    ----------
    objPos : array_like
        Object coordinates (x, y, z). If an Nx3 array of coordinates is
        specified, where each row contains a window coordinate this function
        will return an array of projected coordinates with the same size.
    modelView : array_like
        4x4 combined model and view matrix for returned value to be object
        coordinates. Specify only the view matrix for a coordinate in the scene.
    proj : array_like
        4x4 projection matrix used for rendering.
    viewport : array_like
        Viewport rectangle for the window [x, y, w, h]. If not specified, the
        returned values will be in normalized device coordinates.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Normalized device or viewport coordinates [x, y, z] of the point. The
        `z` component is similar to the depth buffer value for the object point.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(dtype).type
    toReturn = np.zeros_like(objPos, dtype=dtype) if out is None else out
    winCoord, objPos = np.atleast_2d(toReturn, objPos)
    # transformation matrix
    mvp = np.matmul(proj, modelView)
    # must have `w` for this one
    if objPos.shape[1] == 3:
        temp = np.zeros((objPos.shape[1], 4), dtype=dtype)
        temp[:, :3] = objPos
        objPos = temp
    # transform the points
    objNorm = applyMatrix(mvp, objPos, dtype=dtype)
    if viewport is not None:
        # if we have a viewport, transform it
        objNorm[:, :] += 1.0
        winCoord[:, 0] = viewport[0] + viewport[2] * objNorm[:, 0]
        winCoord[:, 1] = viewport[1] + viewport[3] * objNorm[:, 1]
        winCoord[:, 2] = objNorm[:, 2]
        winCoord[:, :] /= 2.0
    else:
        # already in NDC
        winCoord[:, :] = objNorm
    return toReturn  # ref to winCoord 
[docs]
def reverseProject(winPos, modelView, proj, viewport=None, out=None, dtype=None):
    """Unproject window coordinates into object or scene coordinates.
    This function works like `gluUnProject` and can be used to find to an object
    or scene coordinate at the point on-screen (mouse coordinate or pixel). The
    coordinate can then be used to create a direction vector from the viewer's
    eye location. Another use of this function is to convert depth buffer
    samples to object or scene coordinates. This is the inverse operation of
    :func:`forwardProject`.
    Parameters
    ----------
    winPos : array_like
        Window coordinates (x, y, z). If `viewport` is not specified, these
        should be normalized device coordinates. If an Nx3 array of coordinates
        is specified, where each row contains a window coordinate this function
        will return an array of unprojected coordinates with the same size.
        Usually, you only need to specify the `x` and `y` coordinate, leaving
        `z` as zero. However, you can specify `z` if sampling from a depth map
        or buffer to convert a depth sample to an actual location.
    modelView : array_like
        4x4 combined model and view matrix for returned value to be object
        coordinates. Specify only the view matrix for a coordinate in the scene.
    proj : array_like
        4x4 projection matrix used for rendering.
    viewport : array_like
        Viewport rectangle for the window [x, y, w, h]. Do not specify one if
        `winPos` is in already in normalized device coordinates.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Object or scene coordinates.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(dtype).type
    toReturn = np.zeros_like(winPos, dtype=dtype) if out is None else out
    objCoord, winPos = np.atleast_2d(toReturn, winPos)
    # get inverse of model and projection matrix
    invMVP = np.linalg.inv(np.matmul(proj, modelView))
    if viewport is not None:
        # if we have a viewport, we need to transform to NDC first
        objCoord[:, 0] = ((2 * winPos[:, 0] - viewport[0]) / viewport[2])
        objCoord[:, 1] = ((2 * winPos[:, 1] - viewport[1]) / viewport[3])
        objCoord[:, 2] = 2 * winPos[:, 2]
        objCoord -= 1
        objCoord[:, :] = applyMatrix(invMVP, objCoord, dtype=dtype)
    else:
        # already in NDC, just apply
        objCoord[:, :] = applyMatrix(invMVP, winPos, dtype=dtype)
    return toReturn  # ref to objCoord 
[docs]
def lookAt(eyePos, centerPos, upVec=(0.0, 1.0, 0.0), out=None, dtype=None):
    """Create a transformation matrix to orient a view towards some point. 
    
    Based on the same algorithm as 'gluLookAt'. This does not generate a 
    projection matrix, but rather the matrix to transform the observer's view in 
    the scene.
    For more information see:
    https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluLookAt.xml
    Parameters
    ----------
    eyePos : list of float or ndarray
        Eye position in the scene.
    centerPos : list of float or ndarray
        Position of the object center in the scene.
    upVec : list of float or ndarray, optional
        Vector defining the up vector. Default is +Y is up.
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for arrays, can either be 'float32' or 'float64'. If `None` is
        specified, the data type is inferred by `out`. If `out` is not provided,
        the default is 'float64'.
    Returns
    -------
    ndarray
        4x4 view matrix
    Notes
    -----
    * This function was moved from `viewtools` in version 2025.1.0.
    * The returned matrix is row-major. Values are floats with 32-bits of
      precision stored as a contiguous (C-order) array.
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(out.dtype).type
    toReturn = np.zeros((4, 4,), dtype=dtype) if out is None else out
    if out is not None:
        toReturn.fill(0.0)
    eyePos = np.asarray(eyePos, dtype=dtype)
    centerPos = np.asarray(centerPos, dtype=dtype)
    upVec = np.asarray(upVec, dtype=dtype)
    f = centerPos - eyePos
    f /= np.linalg.norm(f)
    upVec /= np.linalg.norm(upVec)
    s = np.cross(f, upVec)
    u = np.cross(s / np.linalg.norm(s), f)
    rotMat = np.zeros((4, 4), dtype=dtype)
    rotMat[0, :3] = s
    rotMat[1, :3] = u
    rotMat[2, :3] = -f
    rotMat[3, 3] = 1.0
 
    transMat = np.identity(4, dtype=dtype)
    transMat[:3, 3] = -eyePos
    return np.matmul(rotMat, transMat, out=toReturn) 
# ------------------------------------------------------------------------------
# Misc. Math Functions
#
[docs]
def zeroFix(a, inplace=False, threshold=None):
    """Fix zeros in an array.
    This function truncates very small numbers in an array to zero and removes
    any negative zeros.
    Parameters
    ----------
    a : ndarray
        Input array, must be a Numpy array.
    inplace : bool
        Fix an array inplace. If `True`, the input array will be modified,
        otherwise a new array will be returned with same `dtype` and shape with
        the fixed values.
    threshold : float or None
        Threshold for truncation. If `None`, the machine epsilon value for the
        input array `dtype` will be used. You can specify a custom threshold as
        a float.
    Returns
    -------
    ndarray
        Output array with zeros fixed.
    """
    toReturn = np.copy(a) if not inplace else a
    toReturn += 0.0  # remove negative zeros
    threshold = np.finfo(a.dtype).eps if threshold is None else float(threshold)
    toReturn[np.abs(toReturn) < threshold] = 0.0  # make zero
    return toReturn 
[docs]
def lensCorrection(xys, coefK=(1.0,), distCenter=(0., 0.), out=None,
                   dtype=None):
    """Lens correction (or distortion) using the division model with even
    polynomial terms.
    Calculate new vertex positions or texture coordinates to apply radial
    warping, such as 'pincushion' and 'barrel' distortion. This is to compensate
    for optical distortion introduced by lenses placed in the optical path of
    the viewer and the display (such as in an HMD).
    See references[1]_ for implementation details.
    Parameters
    ----------
    xys : array_like
        Nx2 list of vertex positions or texture coordinates to distort. Works
        correctly only if input values range between -1.0 and 1.0.
    coefK : array_like or float
        Distortion coefficients K_n. Specifying multiple values will add more
        polynomial terms to the distortion formula. Positive values will produce
        'barrel' distortion, whereas negative will produce 'pincushion'
        distortion. In most cases, two or three coefficients are adequate,
        depending on the degree of distortion.
    distCenter : array_like, optional
        X and Y coordinate of the distortion center (eg. (0.2, -0.4)).
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Array of distorted vertices.
    Notes
    -----
    * At this time tangential distortion (i.e. due to a slant in the display)
      cannot be corrected for.
    References
    ----------
    .. [1] Fitzgibbon, W. (2001). Simultaneous linear estimation of multiple
       view geometry and lens distortion. Proceedings of the 2001 IEEE Computer
       Society Conference on Computer Vision and Pattern Recognition (CVPR).
       IEEE.
    Examples
    --------
    Creating a lens correction mesh with barrel distortion (eg. for HMDs)::
        vertices, textureCoords, normals, faces = gltools.createMeshGrid(
            subdiv=11, tessMode='center')
        # recompute vertex positions
        vertices[:, :2] = mt.lensCorrection(vertices[:, :2], coefK=(5., 5.))
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(dtype).type
    if isinstance(coefK, (float, int,)):
        coefK = (coefK,)
    xys = np.asarray(xys, dtype=dtype)
    coefK = np.asarray(coefK, dtype=dtype)
    d_minus_c = xys - np.asarray(distCenter, dtype=dtype)
    r = np.power(length(d_minus_c, dtype=dtype)[:, np.newaxis],
                 np.arange(len(coefK), dtype=dtype) * 2. + 2.)
    toReturn = np.zeros_like(xys, dtype=dtype) if out is None else out
    denom = dtype(1.0) + dot(coefK, r, dtype=dtype)
    toReturn[:, :] = xys + (d_minus_c / denom[:, np.newaxis])
    return toReturn 
[docs]
def lensCorrectionSpherical(xys, coefK=1.0, aspect=1.0, out=None, dtype=None):
    """Simple lens correction.
    Lens correction for a spherical lenses with distortion centered at the
    middle of the display. See references[1]_ for implementation details.
    Parameters
    ----------
    xys : array_like
        Nx2 list of vertex positions or texture coordinates to distort. Assumes
        the output will be rendered to normalized device coordinates where
        points range from -1.0 to 1.0.
    coefK : float
        Distortion coefficient. Use positive numbers for pincushion distortion
        and negative for barrel distortion.
    aspect : float
        Aspect ratio of the target window or buffer (width / height).
    out : ndarray, optional
        Optional output array. Must be same `shape` and `dtype` as the expected
        output if `out` was not specified.
    dtype : dtype or str, optional
        Data type for computations can either be 'float32' or 'float64'. If
        `out` is specified, the data type of `out` is used and this argument is
        ignored. If `out` is not provided, 'float64' is used by default.
    Returns
    -------
    ndarray
        Array of distorted vertices.
    References
    ----------
    .. [1] Lens Distortion White Paper, Andersson Technologies LLC,
           www.ssontech.com/content/lensalg.html (obtained 07/28/2020)
    Examples
    --------
    Creating a lens correction mesh with barrel distortion (eg. for HMDs)::
        vertices, textureCoords, normals, faces = gltools.createMeshGrid(
            subdiv=11, tessMode='center')
        # recompute vertex positions
        vertices[:, :2] = mt.lensCorrection2(vertices[:, :2], coefK=2.0)
    """
    if out is None:
        dtype = DEFAULT_DTYPE if dtype is None else np.dtype(dtype).type
    else:
        dtype = np.dtype(dtype).type
    toReturn = np.empty_like(xys, dtype=dtype) if out is None else out
    xys = np.asarray(xys, dtype=dtype)
    toReturn[:, 0] = u = xys[:, 0]
    toReturn[:, 1] = v = xys[:, 1]
    coefKCubed = np.power(coefK, 3, dtype=dtype)
    r2 = aspect * aspect * u * u + v * v
    r2sqr = np.sqrt(r2, dtype=dtype)
    f = 1. + r2 * (coefK + coefKCubed * r2sqr)
    toReturn[:, 0] *= f
    toReturn[:, 1] *= f
    return toReturn 
class infrange():
    """
    Similar to base Python `range`, but allowing the step to be a float or even
    0, useful for specifying ranges for logical comparisons.
    """
    def __init__(self, min, max, step=0):
        self.min = min
        self.max = max
        self.step = step
    @property
    def range(self):
        return abs(self.max-self.min)
    def __lt__(self, other):
        return other > self.max
    def __le__(self, other):
        return other > self.min
    def __gt__(self, other):
        return self.min > other
    def __ge__(self, other):
        return self.max > other
    def __contains__(self, item):
        if self.step == 0:
            return self.min < item < self.max
        else:
            return item in np.linspace(self.min, self.max, int(self.range/self.step)+1)
    def __eq__(self, item):
        if isinstance(item, self.__class__):
            return all((
                self.min == item.min,
                self.max == item.max,
                self.step == item.step
            ))
        return item in self
    def __add__(self, other):
        return self.__class__(self.min+other, self.max+other, self.step)
    def __sub__(self, other):
        return self.__class__(self.min - other, self.max - other, self.step)
    def __mul__(self, other):
        return self.__class__(self.min * other, self.max * other, self.step * other)
    def __truedic__(self, other):
        return self.__class__(self.min / other, self.max / other, self.step / other)
if __name__ == "__main__":
    pass